75 Câu hỏi trắc nghiệm môn Hình học Lớp 12 - Tọa độ trong không gian (Có đáp án)
Bạn đang xem tài liệu "75 Câu hỏi trắc nghiệm môn Hình học Lớp 12 - Tọa độ trong không gian (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- 75_cau_hoi_trac_nghiem_mon_hinh_hoc_lop_12_toa_do_trong_khon.doc
Nội dung text: 75 Câu hỏi trắc nghiệm môn Hình học Lớp 12 - Tọa độ trong không gian (Có đáp án)
- 75 CÂU TỌA ĐỘ TRONG KHƠNG GIAN CĨ LỜI GIẢI Câu 1: Gọi là gĩc giữa hai vectơ a và b , với a và b khác 0 , khi đĩ cos bằng a.b a.b a.b a b A. . B. . C. . D. . a . b a . b a . b a . b Câu 2: Gọi là gĩc giữa hai vectơ a 1;2;0 và b 2;0; 1 , khi đĩ cos bằng 2 2 2 A. 0. B. . C. . D. . 5 5 5 Câu 3: Cho vectơ a 1;3;4 , tìm vectơ b cùng phương với vectơ a A. b 2; 6; 8 . B. b 2; 6;8 . C. b 2;6;8 . D. b 2; 6; 8 . Câu 4: Tích vơ hướng của hai vectơ a 2;2;5 ,b 0;1;2 trong khơng gian bằng A. 10. B. 13. C. 12. D. 14. Câu 5: Trong khơng gian cho hai điểm A 1;2;3 , B 0;1;1 , độ dài đoạn AB bằng A. 6. B. 8. C. 10. D. 12. Câu 6: Trong khơng gian Oxyz , gọi i, j,k là các vectơ đơn vị, khi đĩ với M x; y; z thì OM bằng A. xi y j zk. B. xi y j zk. C. x j yi zk. D. xi y j zk. Câu 7: Tích cĩ hướng của hai vectơ a (a1;a2 ;a3 ) ,b (b1;b2 ;b3 ) là một vectơ, kí hiệu a,b , được xác định bằng tọa độ A. a2b3 a3b2 ;a3b1 a1b3;a1b2 a2b1 . B. a2b3 a3b2 ;a3b1 a1b3;a1b2 a2b1 . C. a b a b ;a b a b ;a b a b . D. a b a b ;a b a b ;a b a b . 2 3 3 2 3 1 1 3 1 2 2 1 2 2 3 3 3 3 1 1 1 1 2 2 Câu 8: Cho các vectơ u u1;u2 ;u3 và v v1;v2 ;v3 , u.v 0 khi và chỉ khi A. u1v1 u2v2 u3v3 1 . B. u1 v1 u2 v2 u3 v3 0 . C. u v u v u v 0 . D. u v u v u v 1 . 1 1 2 2 3 3 1 2 2 3 3 1 Câu 9: Cho vectơ a 1; 1;2 , độ dài vectơ a là A. 6 . B. 2. C. . 6 D. 4. Câu 10: Trong khơng gian Oxyz , cho điểm M nằm trên trục Ox sao cho M khơng trùng với gốc tọa độ, khi đĩ tọa độ điểm M cĩ dạng A. M a;0;0 ,a 0 . B. M 0;b;0 ,b 0 . C. M 0;0;c ,c 0 . D. M a;1;1 ,a 0 . Câu 11: Trong khơng gian Oxyz , cho điểm M nằm trên mặt phẳng Oxy sao cho M khơng trùng với gốc tọa độ và khơng nằm trên hai trục Ox,Oy , khi đĩ tọa độ điểm M là (a,b,c 0 ) A. 0;b;a . B. a;b;0 . C. 0;0;c . D. a;1;1 Câu 12: Trong khơng gian Oxyz , cho a 0;3;4 và b 2 a , khi đĩ tọa độ vectơ b cĩ thể là A. 0;3;4 . B. 4;0;3 . C. 2;0;1 . D. 8;0; 6 . Câu 13: Trong khơng gian Oxyz cho hai vectơ u và v , khi đĩ u,v bằng A. u . v .sin u,v . B. u . v .cos u,v . C. u.v.cos u,v . D. u.v.sin u,v . Câu 14: Trong khơng gian Oxyz cho ba vectơ a 1; 1;2 ,b 3;0; 1 ,c 2;5;1 , vectơ m a b c cĩ tọa độ là A. 6;0; 6 .B. 6;6;0 . C. 6; 6;0 . D. 0;6; 6 . Câu 15: Trong khơng gian Oxyz cho ba điểm A 1;0; 3 , B 2;4; 1 ,C 2; 2;0 . Độ dài các cạnh AB, AC, BC của tam giác ABC lần lượt là A. 21, 13, 37 . B. 11, 14, 37 . C. 21, 14, 37 . D. 21, 13, 35 .
- Câu 16: Trong khơng gian Oxyz cho ba điểm A 1;0; 3 , B 2;4; 1 ,C 2; 2;0 . Tọa độ trọng tâm G của tam giác ABC là 5 2 4 5 2 4 5 A. ; ; . B. ; ; . C. 5;2;4 . D. ;1; 2 . 3 3 3 3 3 3 2 Câu 17: Trong khơng gian Oxyz cho ba điểm A 1;2;0 , B 1;1;3 ,C 0; 2;5 . Để 4 điểm A, B,C, D đồng phẳng thì tọa độ điểm D là A. D 2;5;0 . B. D 1;2;3 . C. D 1; 1;6 . D. D 0;0;2 . Câu 18: Trong khơng gian Oxyz , cho ba vecto a (1;2;3),b ( 2;0;1),c ( 1;0;1) . Tìm tọa độ của vectơ n a b 2c 3i A. n 6;2;6 . B. n 6;2; 6 . C. n 0;2;6 . D. n 6;2;6 . Câu 19: Trong khơng gian Oxyz , cho tam giác ABC cĩ A(1;0;2), B( 2;1;3),C(3;2;4) . Tìm tọa độ trọng tâm G của tam giác ABC 2 1 A. G ;1;3 . B. G 2;3;9 . C. G 6;0;24 . D. G 2; ;3 . 3 3 Câu 20: Cho 3 điểm M 2;0;0 , N 0; 3;0 , P 0;0;4 . Nếu MNPQ là hình bình hành thì tọa độ của điểm Q là A. Q 2; 3;4 B. Q 2;3;4 C. Q 3;4;2 D. Q 2; 3; 4 Câu 21: Trong khơng gian tọa độ Oxyz cho ba điểm M 1;1;1 , N 2;3;4 , P 7;7;5 . Để tứ giác MNPQ là hình bình hành thì tọa độ điểm Q là A. Q 6;5;2 . B. Q 6;5;2 . C. Q 6; 5;2 . D. Q 6; 5; 2 . Câu 22: Cho 3 điểm A 1;2;0 , B 1;0; 1 , C 0; 1;2 . Tam giác ABC là A. tam giác cĩ ba gĩc nhọn. B. tam giác cân đỉnh A . C. tam giác vuơng đỉnh A . D. tam giác đều. Câu 23: Trong khơng gian tọa độ Oxyz cho ba điểm A 1;2;2 , B 0;1;3 ,C 3;4;0 . Để tứ giác ABCD là hình bình hành thì tọa độ điểm D là A. D 4;5; 1 . B. .D 4;5; 1C. . D. . D 4; 5; 1 D 4; 5;1 Câu 24: Cho hai vectơ a và b tạo với nhau gĩc 600 và a 2; b 4 . Khi đĩ a b bằng A. 8 3 20. B. 2 7. C. 2 5. D. 2 . Câu 25: Cho điểm M 1;2; 3 , khoảng cách từ điểm M đến mặt phẳng Oxy bằng A. 2. B. . 3 C. 1. D. 3. Câu 26: Cho điểm M 2;5;0 , hình chiếu vuơng gĩc của điểm M trên trục Oy là điểm A. M 2;5;0 . B. M 0; 5;0 . C. M 0;5;0 . D. M 2;0;0 . Câu 27: Cho điểm M 1;2; 3 , hình chiếu vuơng gĩc của điểm M trên mặt phẳng Oxy là điểm A. M 1;2;0 . B. M 1;0; 3 . C. M 0;2; 3 . D. M 1;2;3 . Câu 28: Cho điểm M 2;5;1 , khoảng cách từ điểm M đến trục Ox bằng A. . 29 B. . 5 C. 2. D. 26 . Câu 29: Cho hình chĩp tam giác S.ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là đẳng thức đúng A. IA IB IC. B. IA IB CI 0. C. IA BI IC 0. D. IA IB IC 0. Câu 30: Trong khơng gian Oxyz , cho 3 vectơ a 1;1;0 ; b 1;1;0 ; c 1;1;1 . Trong các mệnh đề sau, mệnh đề nào sai: A. b c. B. a 2. C. c 3. D. a b.
- Câu 31: Cho điểm M 3;2; 1 , điểm đối xứng của M qua mặt phẳng Oxy là điểm A. .M 3; 2;1 B. . C. M 3; 2; 1 M 3;2;1 . D. .M 3;2;0 Câu 32: Cho điểm M 3;2; 1 , điểm M a;b;c đối xứng của M qua trục Oy , khi đĩ a b c bằng A. 6. B. 4. C. 0. D. 2. Câu 33: Cho u 1;1;1 và v 0;1;m . Để gĩc giữa hai vectơ u,v cĩ số đo bằng 450 thì m bằng A. . 3 B. 2 3 . C. .1 3 D. . 3 Câu 34: Cho A 1; 2;0 , B 3;3;2 ,C 1;2;2 , D 3;3;1 . Thể tích của tứ diện ABCD bằng A. 5. B. 4. C. 3. D. 6. Câu 35: Trong khơng gian Oxyz cho tứ diện ABCD . Độ dài đường cao vẽ từ D của tứ diện ABCD cho bởi cơng thức nào sau đây: 1 AB, AC .AD 1 AB, AC .AD A. h . B. h . 3 3 AB.AC AB.AC AB, AC .AD AB, AC .AD C. Dh. h . AB.AC AB.AC Câu 36: Trong khơng gian tọa độ Oxyz , cho bốn điểm A 1; 2;0 , B 3;3;2 ,C 1;2;2 , D 3;3;1 . Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng ABC là 9 9 9 9 A. . B. . C. . D. . 7 2 7 2 14 Câu 37: Trong khơng gian Oxyz , cho tứ diện ABCD cĩ A(1;0;2), B( 2;1;3),C(3;2;4), D(6;9; 5) . Tìm tọa độ trọng tâm G của tứ diện ABCD 18 14 A. G 9; ; 30 . B. G 8;12;4 . C. G 3;3; . D. G 2;3;1 . 4 4 Câu 38: Trong khơng gian Oxyz , cho hai điểm A(1;2;1), B(2; 1;2) . Điểm M trên trục Ox và cách đều hai điểm A, B cĩ tọa độ là 1 1 3 1 3 1 3 A. M ; ; . B. M ;0;0 . C. M ;0;0 . D. M 0; ; . 2 2 2 2 2 2 2 Câu 39: Trong khơng gian Oxyz , cho hai điểm A(1;2;1), B(3; 1;2) . Điểm M trên trục Oz và cách đều hai điểm A, B cĩ tọa độ là 3 3 1 3 A. M 0;0;4 . B. M 0;0; 4 . C. M 0;0; . D. M ; ; . 2 2 2 2 Câu 40: Trong khơng gian Oxyz cho ba điểm A( 1; 2;3), B(0;3;1),C(4;2;2) . Cosin của gĩc B· AC là 9 9 9 9 A. . B. . C. . D. . 2 35 35 2 35 35 Câu 41: Tọa độ của vecto n vuơng gĩc với hai vecto a (2; 1;2),b (3; 2;1) là A. n 3;4;1 . B. n 3;4; 1 . C. n 3;4; 1 . D. n 3; 4; 1 . 2 Câu 42: Cho a 2; b 5, gĩc giữa hai vectơ a và b bằng , u ka b;v a 2b. Để u vuơng gĩc với v 3 thì k bằng 6 45 6 45 A. . B. . C. D. . . 45 6 45 6 Câu 43: Cho u 2; 1;1 ,v m;3; 1 , w 1;2;1 . Với giá trị nào của m thì ba vectơ trên đồng phẳng 3 3 8 8 A. . B. . C. . D. . 8 8 3 3
- Câu 44: Cho hai vectơ a 1;log3 5;m , b 3;log5 3;4 . Với giá trị nào của m thì a b A. m 1;m 1 . B. m 1 . C. m 1. D. m 2;m 2 . Câu 45: Trong khơng gian Oxyz cho ba điểm A(2;5;3), B(3;7;4),C(x; y;6) . Giá trị của x, y để ba điểm A, B,C thẳng hàng là A. x 5; y 11. B. x 5; y 11 . C. x 11; y 5 . D. x 11; y 5 . Câu 46: Trong khơng gian Oxyz cho ba điểm A(1;0;0), B(0;0;1),C(2;1;1) . Tam giác ABC là A. tam giác vuơng tại A . B. tam giác cân tại A . C. tam giác vuơng cân tại A . D. Tam giác đều. Câu 47: Trong khơng gian Oxyz cho tam giác ABC cĩ A(1;0;0), B(0;0;1),C(2;1;1) . Tam giác ABC cĩ diện tích bằng 6 6 1 A. 6 . B. . C. . D. . 3 2 2 Câu 48: Ba đỉnh của một hình bình hành cĩ tọa độ là 1;1;1 , 2;3;4 , 7;7;5 . Diện tích của hình bình hành đĩ bằng 83 A. 2 83 . B. 83 . C. 83 . D. . 2 Câu 49: Cho 3 vecto a 1;2;1 ; b 1;1;2 và c x;3x; x 2 . Tìm x để 3 vectơ a,b,c đồng phẳng A. 2. B. C1 D . 2. 1. Câu 50: Trong khơng gian Oxyz cho ba vectơ a 3; 2;4 , b 5;1;6 , c 3;0;2 . Tìm vectơ x sao cho vectơ x đồng thời vuơng gĩc với a,b,c A. 1;0;0 . B. 0;0;1 . C. 0;1;0 . D. 0;0;0 . Câu 51: Trong khơng gianOxyz , cho 2 điểm B(1;2; 3) ,C(7;4; 2) . Nếu E là điểm thỏa mãn đẳng thức CE 2EB thì tọa độ điểm E là 8 8 8 8 8 1 A. 3; ; . B. 3; ; . C. 3;3; . D. 1;2; . 3 3 3 3 3 3 Câu 52: Trong khơng gian với hệ trục tọa độ Oxyz , cho ba điểm A(1;2; 1) , B(2; 1;3) ,C( 2;3;3) . Điểm M a;b;c là đỉnh thứ tư của hình bình hành ABCM , khi đĩ P a2 b2 c2 cĩ giá trị bằng A. 43. . B. 44 C. 42. . D. 45. Câu 53: Trong khơng gian với hệ trục tọa độ Oxyz cho ba điểm A(1;2; 1) , B(2; 1;3) ,C( 2;3;3) . Tìm tọa độ điểm D là chân đường phân giác trong gĩc A của tam giác ABC A. D(0;1;3) . B. D(0;3;1) . C. D(0; 3;1) . D. D(0;3; 1) . Câu 54: Trong khơng gian với hệ toạ độ Oxyz , cho các điểm A( 1;3;5) , B( 4;3;2) , C(0;2;1) . Tìm tọa độ điểm I tâm đường trịn ngoại tiếp tam giác ABC 8 5 8 5 8 8 5 8 8 8 8 5 A. I( ; ; ) . B. I( ; ; ) . C. I( ; ; ). D. I( ; ; ) . 3 3 3 3 3 3 3 3 3 3 3 3 Câu 55: Trong khơng gian Oxyz , cho 3 vectơ a 1;1;0 , b 1;1;0 , c 1;1;1 . Cho hình hộp OABC.O A B C thỏa mãn điều kiện OA a, OB b, OC ' c . Thể tích của hình hộp nĩi trên bằng: 1 2 A. B. 4 C. D. 2 3 3 Câu 56: Trong khơng gian với hệ trục Oxyz cho tọa độ 4 điểm A 2; 1;1 , B 1;0;0 , C 3;1;0 , D 0;2;1 . Cho các mệnh đề sau: 1- Độ dài AB 2 . 2- Tam giác BCD vuơng tại B . 3- Thể tích của tứ diện ABCD bằng 6 .
- Các mệnh đề đúng là: A. 2).B. 3). C. 1); 3). D. 2), 1) Câu 57: Trong khơng gianOxyz , cho ba vectơ a 1,1,0 ;b (1,1,0);c 1,1,1 . Trong các mệnh đề sau, mệnh đề nào đúng: 6 A. cos b,c . B. a b c 0. 3 A. ađồng,b,c phẳng. D. a.b 1. Câu 58: Trong khơng gian với hệ tọa độ Oxyz , cho tứ diện ABCD , biết A(1;0;1) ,B( 1;1;2) , C( 1;1;0) , D(2; 1; 2) . Độ dài đường cao AH của tứ diện ABCD bằng: 2 1 13 3 13 A. . B. . C. . D. . 13 13 2 13 Câu 59: Cho hình chĩp tam giác S.ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là đẳng thức đúng 1 1 A. SI SA SB SC . B. SI SA SB SC . 2 3 C. SI SA SB SC. D. SI SA SB SC 0. Câu 60: Trong khơng gian Oxyz , cho tứ diện ABCD cĩ A(1;0;0), B(0;1;0),C(0;0;1), D( 2;1; 1) . Thể tích của tứ diện ABCD bằng 3 1 A. . B. 3 . C. 1 . D. . 2 2 Câu 61: Cho hình chĩp S.ABC cĩ SA SB a, SC 3a, ·ASB C· SB 600 ,C· SA 900 . Gọi G là trọng tâm tam giác ABC . Khi đĩ khoảng cách SG bằng a 15 a 5 a 7 A. . B. . C. . D. a 3 . 3 3 3 Câu 62: Trong khơng gian tọa độ Oxyz cho ba điểm A 2;5;1 , B 2; 6;2 ,C 1;2; 1 và điểm M m;m;m , để MB 2AC đạt giá trị nhỏ nhất thì m bằng A. 2. B. 3 . C. 1. D. 4. Câu 63: Trong khơng gian tọa độ Oxyz cho ba điểm A 2;5;1 , B 2; 6;2 ,C 1;2; 1 và điểm M m;m;m , để MA2 MB2 MC 2 đạt giá trị lớn nhất thì m bằng A. 3. B. 4.C. 2.D. 1. Câu 64: Cho hình chĩp S.ABCD biết A 2;2;6 , B 3;1;8 ,C 1;0;7 , D 1;2;3 . Gọi H là trung điểm của 27 CD, SH ABCD . Để khối chĩp S.ABCD cĩ thể tích bằng (đvtt) thì cĩ hai điểm S , S thỏa mãn yêu 2 1 2 cầu bài tốn. Tìm tọa độ trung điểm I của S1S2 A. I 0; 1; 3 . B. I 1;0;3 C. I 0;1;3 . D. I 1;0; 3 . Câu 65: Trong khơng gian Oxyz , cho hai điểm A(2; 1;7), B(4;5; 2) . Đường thẳng AB cắt mặt phẳng (Oyz) tại điểm M . Điểm M chia đoạn thẳng AB theo tỉ số nào 1 1 2 A. . B. .2 C. . D. . 2 3 3 Câu 66: Trong khơng gian Oxyz , cho tứ diện ABCD cĩ A(2;1; 1), B(3;0;1),C(2; 1;3) và D thuộc trục Oy . Biết VABCD 5 và cĩ hai điểm D1 0; y1;0 , D2 0; y2 ;0 thỏa mãn yêu cầu bài tốn. Khi đĩ y1 y2 bằng A. 0. B. 1. C. .2 D. . 3 Câu 67: Trong khơng gian Oxyz , cho tam giác ABC cĩ A( 1;2;4), B(3;0; 2),C(1;3;7) . Gọi D là chân đường phân giác trong của gĩc A . Tính độ dài OD .
- 207 203 201 205 A. . B. C. . D. . 3 3 3 3 Câu 68: Trong khơng gian với hệ toạ độ Oxyz , cho tam giác ABC , biết A(1;1;1) , B(5;1; 2) ,C(7;9;1) . Tính độ dài phân giác trong AD của gĩc A 2 74 3 74 A. . B. . C. 2 74. D. 3 74. 3 2 Câu 69: Trong khơng gian với hệ toạ độ Oxyz , cho 4 điểm A(2;4; 1) ,B(1;4; 1) , C(2;4;3) D(2;2; 1) . Biết M x; y; z , để MđạtA 2giá M trịB nhỏ2 M nhấtC 2 thìM D2 bằng x y z A. 7. B. 8. C. 9. D. 6. Câu 70: Trong khơng gian với hệ trục tọa độ Oxyz , cho ba điểm A(2;3;1) , B( 1;2;0) ,C(1;1; 2) . H là trực tâm tam giác ABC , khi đĩ, độ dài đoạn OH bằng 870 870 870 870 A. . B. . C. . D. . 12 14 16 15 Câu 71: Trong khơng gian với hệ tọa độ Oxyz , cho tam giác ABC cĩ A(3;1;0) , B nằm trên mặt phẳng (Oxy) và cĩ hồnh độ dương, C nằm trên trục Oz và H (2;1;1) là trực tâm của tam giác ABC . Toạ độ các điểm B , C thỏa mãn yêu cầu bài tốn là: 3 177 17 177 3 177 3 177 17 177 3 177 A. B ; ;0 ,C 0;0; . B. B ; ;0 ,C 0;0; . 4 2 4 4 2 4 3 177 17 177 3 177 3 177 17 177 3 177 C. B ; ;0 ,C 0;0; . D. B ; ;0 ,C 0;0; . 4 2 4 4 2 4 Câu 72: Trong khơng gian với hệ tọa độ Oxyz , cho hình vuơng ABCD , B(3;0;8) , D( 5; 4;0) . Biết đỉnh A thuộc mặt phẳng (Oxy ) và cĩ tọa độ là những số nguyên, khi đĩ CA CB bằng: A. 5 10. B. 6 10. C. 10 6. D. 10 5. Câu 73: Trong khơng gian với hệ tọa độ Oxyz , cho tam giác ABC , biết A(5;3; 1) ,B(2;3; 4) , C(3;1; 2) . Bán kính đường trịn nội tiếp tam giác ABC bằng: A. 9 2 6. B. 9 3 6. C. 9 3 6. D. 9 2 6. Câu 74: Trong khơng gian với hệ trục tọa độ Oxyz , cho ba điểm M 3;0;0 , N m,n,0 , P 0;0; p . Biết MN 13, M· ON 600 , thể tích tứ diện OMNP bằng 3. Giá trị của biểu thức A m 2n2 p2 bằng A. 29. B. 2 7. C. 28. D. 30. Câu 75: Trong khơng gian với hệ trục tọa độ Oxyz , cho ba điểm A(2;3;1) ,B( 1;2;0) ,C(1;1; 2) . Gọi I a;b;c là tâm đường trịn ngoại tiếp tam giác ABC . Tính giá trị biểu thức P 15a 30b 75c A. 48. B. 50. C. 52. D. 46. BẢNG ĐÁP ÁN 1.A 2.B 3.A 4.C 5.A 6.D 7.A 8.C 9.A 10.A 11.B 12.D 13.A 14.C 15.C 16.A 17.A 18.D 19.A 20.B 21.B 22.A 23.A 24.B 25.D 26.C 27.A 28.D 29.D 30.A 31.C 32.C 33.B 34.C 35.D 36.A 37.D 38.C 39.A 40.A 41.B 42.D 43.D 44.C 45.A 46.A 47.C 48.A 49.A 50.D 51.A 52.B 53.A 54.C 55.D 56.A 57.A 58.B 59.B 60.D 61.A 62.A 63.B 64.C 65.A 66.B 67.D 68.A 69.A 70.D 71.A 72.B 73.B 74.A 75.B
- II –HƯỚNG DẪN GIẢI Câu 1: Gọi là gĩc giữa hai vectơ a và b , với a và b khác 0 , khi đĩ cos bằng a.b a.b a.b a b A. . B. . C. . D. . a . b a . b a . b a . b Câu 2: Gọi là gĩc giữa hai vectơ a 1;2;0 và b 2;0; 1 , khi đĩ cos bằng 2 2 2 A. 0. B. . C. . D. . 5 5 5 Câu 3: Cho vectơ a 1;3;4 , tìm vectơ b cùng phương với vectơ a A. b 2; 6; 8 . B. b 2; 6;8 . C. b 2;6;8 . D. b 2; 6; 8 . Câu 4: Tích vơ hướng của hai vectơ a 2;2;5 ,b 0;1;2 trong khơng gian bằng A. 10. B. 13.C. 12.D. 14. Câu 5: Trong khơng gian cho hai điểm A 1;2;3 , B 0;1;1 , độ dài đoạn AB bằng A. 6. B. 8. C. 10. D. 12. Câu 6: Trong khơng gian Oxyz , gọi i, j,k là các vectơ đơn vị, khi đĩ với M x; y; z thì OM bằng A. xi y j zk. B. xi y j zk. C. D.x j yi zk. xi y j zk. Câu 7: Tích cĩ hướng của hai vectơ a (a1;a2 ;a3 ) ,b (b1;b2 ;b3 ) là một vectơ, kí hiệu a,b , được xác định bằng tọa độ A. a2b3 a3b2 ;a3b1 a1b3;a1b2 a2b1 . B. a2b3 a3b2 ;a3b1 a1b3;a1b2 a2b1 . C. a b a b ;a b a b ;a b a b . D. a b a b ;a b a b ;a b a b . 2 3 3 2 3 1 1 3 1 2 2 1 2 2 3 3 3 3 1 1 1 1 2 2 Câu 8: Cho các vectơ u u1;u2 ;u3 và v v1;v2 ;v3 , u.v 0 khi và chỉ khi A. u1v1 u2v2 u3v3 1 . B. u1 v1 u2 v2 u3 v3 0 . C. u v u v u v 0 . D.u v u v u v 1 . 1 1 2 2 3 3 1 2 2 3 3 1 Câu 9: Cho vectơ a 1; 1;2 , độ dài vectơ a là A. . 6 B. 2. C. . 6 D. 4. Câu 10: Trong khơng gian Oxyz , cho điểm M nằm trên trục Ox sao cho M khơng trùng với gốc tọa độ, khi đĩ tọa độ điểm M cĩ dạng A. M a;0;0 ,a 0 . B. M 0;b;0 ,b 0 . C. M 0;0;c ,c 0 . D. M a;1;1 ,a 0 . Câu 11: Trong khơng gian Oxyz , cho điểm M nằm trên mặt phẳng Oxy sao cho M khơng trùng với gốc tọa độ và khơng nằm trên hai trục Ox,Oy , khi đĩ tọa độ điểm M là (a,b,c 0 ) A. 0;b;a . B. a;b;0 . C. 0;0;c . D. a;1;1 Câu 12: Trong khơng gian Oxyz , cho a 0;3;4 và b 2 a , khi đĩ tọa độ vectơ b cĩ thể là A. 0;3;4 . B. 4;0;3 . C. 2;0;1 . D. 8;0; 6 . Câu 13: Trong khơng gian Oxyz cho hai vectơ u và v , khi đĩ u,v bằng A. u . v .sin u,v . B. u . v .cos u,v . C. u.v.cos u,v . D. u.v.sin u,v . Câu 14: Trong khơng gian Oxyz cho ba vectơ a 1; 1;2 ,b 3;0; 1 ,c 2;5;1 , vectơ m a b c cĩ tọa độ là A. 6;0; 6 . B. 6;6;0 . C. .6; 6;0 D. .0;6; 6 Câu 15: Trong khơng gian Oxyz cho ba điểm A 1;0; 3 , B 2;4; 1 ,C 2; 2;0 . Độ dài các cạnh AB, AC, BC của tam giác ABC lần lượt là A. 21, 13, 37 . B. 11, 14, 37 . C. 21, 14, 37 . D. 21, 13, 35 . Câu 16: Trong khơng gian Oxyz cho ba điểm A 1;0; 3 , B 2;4; 1 ,C 2; 2;0 . Tọa độ trọng tâm G của tam giác ABC là
- 5 2 4 5 2 4 5 A. ; ; . B. ; ; . C. 5;2;4 . D. ;1; 2 . 3 3 3 3 3 3 2 Câu 17: Trong khơng gian Oxyz cho ba điểm A 1;2;0 , B 1;1;3 ,C 0; 2;5 . Để 4 điểm A, B,C, D đồng phẳng thì tọa độ điểm D là A. D 2;5;0 . B. D 1;2;3 . C. D 1; 1;6 . D. D 0;0;2 . Hướng dẫn giải Cách 1:Tính AB, AC .AD 0 Cách 2: Lập phương trình (ABC) và thế toạ độ D vào phương trình tìm được. Câu 18: Trong khơng gian Oxyz , cho ba vecto a (1;2;3),b ( 2;0;1),c ( 1;0;1) . Tìm tọa độ của vectơ n a b 2c 3i A. n 6;2;6 . B. n 6;2; 6 . C. n 0;2;6 .D. n . 6;2;6 Câu 19: Trong khơng gian Oxyz , cho tam giác ABC cĩ A(1;0;2), B( 2;1;3),C(3;2;4) . Tìm tọa độ trọng tâm G của tam giác ABC 2 1 A. G ;1;3 . B. G 2;3;9 . C. G 6;0;24 . D. G 2; ;3 . 3 3 Câu 20: Cho 3 điểm M 2;0;0 , N 0; 3;0 , P 0;0;4 . Nếu MNPQ là hình bình hành thì tọa độ của điểm Q là A. B.Q 2; 3;4 C. Q 2;3;4 D. Q 3; 4;2 Q 2; 3; 4 Hướng dẫn giải x 2 Gọi Q(x; y;z) , MNPQ là hình bình hành thì MN QP y 3 z 4 0 Câu 21: Trong khơng gian tọa độ Oxyz cho ba điểm M 1;1;1 , N 2;3;4 , P 7;7;5 . Để tứ giác MNPQ là hình bình hành thì tọa độ điểm Q là A. Q 6;5;2 . B. Q 6;5;2 . C. Q 6; 5;2 . D. Q 6; 5; 2 . Hướng dẫn giải Điểm Q x; y; z MN 1;2;3 , QP 7 x;7 y;5 z Vì MNPQ là hình bình hành nên MN QP Q 6;5;2 Câu 22: Cho 3 điểm A 1;2;0 , B 1;0; 1 , C 0; 1;2 . Tam giác ABC là A. tam giác cĩ ba gĩc nhọn.B. tam giác cân đỉnh . A C. tam giác vuơng đỉnh A .D. tam giác đều. Hướng dẫn giải AB (0; 2; 1); AC ( 1; 3;2) . Ta thấy AB.AC 0 ABC khơng vuơng. AB AC ABC khơng cân. Câu 23: Trong khơng gian tọa độ Oxyz cho ba điểm A 1;2;2 , B 0;1;3 ,C 3;4;0 . Để tứ giác ABCD là hình bình hành thì tọa độ điểm D là A. .D 4;5; 1 B. . C. . D 4;5D.; 1. D 4; 5; 1 D 4; 5;1 Hướng dẫn giải Điểm D x; y; z AB 1; 1;1 , DC 3 x;4 y; z Vì ABCD là hình bình hành nên AB DC D 4;5; 1 Câu 24: Cho hai vectơ a và b tạo với nhau gĩc 600 và a 2; b 4 . Khi đĩ a b bằng A. 8 3 20. B. 2 C.7 . 2 D. 5. . 2
- Hướng dẫn giải 2 2 2 Ta cĩ a b a b 2 a b .cos a,b 4 16 8 28 a b 2 7. Câu 25: Cho điểm M 1;2; 3 , khoảng cách từ điểm M đến mặt phẳng Oxy bằng A. 2. B. . 3 C. 1.D. 3. Hướng dẫn giải Với M a;b;c d M , Oxy c Câu 26: Cho điểm M 2;5;0 , hình chiếu vuơng gĩc của điểm M trên trục Oy là điểm A. M 2;5;0 . B. M 0; 5;0 .C. M . 0;5;0 D. M . 2;0;0 Hướng dẫn giải Với M a;b;c hình chiếu vuơng gĩc của M lên trục Oy là M1 0;b;0 Câu 27: Cho điểm M 1;2; 3 , hình chiếu vuơng gĩc của điểm M trên mặt phẳng Oxy là điểm A. M 1;2;0 . B. M 1;0; 3 . C. M 0;2; 3 . D. M 1;2;3 . Hướng dẫn giải Với M a;b;c hình chiếu vuơng gĩc của M lên mặt phẳng Oxy là M1 a;b;0 Câu 28: Cho điểm M 2;5;1 , khoảng cách từ điểm M đến trục Ox bằng A. 29 . B. .C.5 2.D. . 26 Hướng dẫn giải Với M a;b;c d M ,Ox b2 c2 Câu 29: Cho hình chĩp tam giác S.ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là đẳng thức đúng A. IA IB IC. B. IA IB CI 0. C. D.IA BI IC 0. IA IB IC 0. Câu 30: Trong khơng gian Oxyz , cho 3 vectơ a 1;1;0 ; b 1;1;0 ; c 1;1;1 . Trong các mệnh đề sau, mệnh đề nào sai: A. b c. B. a 2. C. c 3. D. a b. Hướng dẫn giải Vì b.c 2 0. Câu 31: Cho điểm M 3;2; 1 , điểm đối xứng của M qua mặt phẳng Oxy là điểm A. .M 3; 2;1 B. . C. . M 3; 2D.; . 1 M 3;2;1 M 3;2;0 Hướng dẫn giải Với M a;b;c điểm đối xứng của M qua mặt phẳng Oxy là M a;b; c Câu 32: Cho điểm M 3;2; 1 , điểm M a;b;c đối xứng của M qua trục Oy , khi đĩ a b c bằng A. 6. B. 4. C. 0. D. 2. Hướng dẫn giải Với M a;b;c điểm đối xứng của M qua trục Oy là M a;b; c M 3;2;1 a b c 0. Câu 33: Cho u 1;1;1 và v 0;1;m . Để gĩc giữa hai vectơ u,v cĩ số đo bằng 450 thì m bằng A. . 3 B. . 2 3C. . 1 D. .3 3 Hướng dẫn giải m 1 1.0 1.1 1.m 1 2 cos 2 m 1 3 m 1 2 2 2 3. m 1 2 3 m 1 2 m 1 m 2 3 Câu 34: Cho A 1; 2;0 , B 3;3;2 ,C 1;2;2 , D 3;3;1 . Thể tích của tứ diện ABCD bằng A. 5. B. 4. C. 3. D. 6. Hướng dẫn giải
- Tính AB 2;5;2 , AC 2;4;2 , AD 2;5;1 1 V AB, AC .AD 3 6 Sử dụng Casio (nhập vectơ AB ) w 8 1 1 (nhập vectơ AC ) q 5 2 2 2 q 5 2 3 1 (nhập vectơ AD ) C1a6qc(abs) q53q54q57q55= (tính V ) Câu 35: Trong khơng gian Oxyz cho tứ diện ABCD . Độ dài đường cao vẽ từ D của tứ diện ABCD cho bởi cơng thức nào sau đây: 1 AB, AC .AD 1 AB, AC .AD A. h . B. h . 3 AB.AC 3 AB.AC AB, AC .AD AB, AC .AD C. h D. h . AB.AC AB.AC Hướng dẫn giải 1 1 1 AB, AC .AD Vì VABCD h. AB.AC AB, AC .AD nên h . 3 2 6 AB.AC Câu 36: Trong khơng gian tọa độ Oxyz , cho bốn điểm A 1; 2;0 , B 3;3;2 ,C 1;2;2 , D 3;3;1 . Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng ABC là 9 9 9 9 A. . B. . C. . D. . 7 2 7 2 14 Hướng dẫn giải Tính AB 2;5;2 , AC 2;4;2 , AD 2;5;1 1 V AB, AC .AD 3 6 1 1 V B.h , với B S ABC AB, AC 7 2 , h d D, ABC 3 2 3V 3.3 9 h B 7 2 7 2 Câu 37: Trong khơng gian Oxyz , cho tứ diện ABCD cĩ A(1;0;2), B( 2;1;3),C(3;2;4), D(6;9; 5) . Tìm tọa độ trọng tâm G của tứ diện ABCD 18 14 A. G 9; ; 30 . B. G 8;12;4 . C. G 3;3; .D. G . 2;3;1 4 4 Câu 38: Trong khơng gian Oxyz , cho hai điểm A(1;2;1), B(2; 1;2) . Điểm M trên trục Ox và cách đều hai điểm A, B cĩ tọa độ là 1 1 3 1 3 1 3 A. M ; ; . B. M ;0;0 .C. M .;0;0 D. M .0; ; 2 2 2 2 2 2 2 Hướng dẫn giải M Ox M a;0;0 2 2 M cách đều hai điểm A, B nên MA2 MB2 1 a 22 12 2 a 22 12 3 2a 3 a 2 Câu 39: Trong khơng gian Oxyz , cho hai điểm A(1;2;1), B(3; 1;2) . Điểm M trên trục Oz và cách đều hai điểm A, B cĩ tọa độ là
- 3 3 1 3 A. M 0;0;4 . B. M 0;0; 4 . C. M 0;0; . D. M ; ; . 2 2 2 2 Câu 40: Trong khơng gian Oxyz cho ba điểm A( 1; 2;3), B(0;3;1),C(4;2;2) . Cosin của gĩc B· AC là 9 9 9 9 A. . B. . C. . D. . 2 35 35 2 35 35 Câu 41: Tọa độ của vecto n vuơng gĩc với hai vecto a (2; 1;2),b (3; 2;1) là A. n 3;4;1 .B. .n C. 3;4; 1 .n D. 3;4; 1 . n 3; 4; 1 2 Câu 42: Cho a 2; b 5, gĩc giữa hai vectơ a và b bằng , u ka b;v a 2b. Để u vuơng gĩc với v thì k bằng 3 6 45 6 45 A. B. . C. . D. . . 45 6 45 6 Hướng dẫn giải 2 u.v ka b a 2b 4k 50 2k 1 a b cos 3 6k 45 Câu 43: Cho u 2; 1;1 ,v m;3; 1 , w 1;2;1 . Với giá trị nào của m thì ba vectơ trên đồng phẳng 3 3 8 8 A. . B. . C. .D. . 8 8 3 3 Hướng dẫn giải Ta cĩ: u,v 2;m 2;m 6 , u,v .w 3m 8 8 u,v, w đồng phẳng u,v .w 0 m 3 Câu 44: Cho hai vectơ a 1;log3 5;m , b 3;log5 3;4 . Với giá trị nào của m thì a b A. m 1;m 1 . B. m 1 .C. .m D.1 . m 2;m 2 Câu 45: Trong khơng gian Oxyz cho ba điểm A(2;5;3), B(3;7;4),C(x; y;6) . Giá trị của x, y để ba điểm A, B,C thẳng hàng là A. x 5; y 11. B. x 5; y 11 . C. x 11; y 5 . D. x 11; y 5 . Hướng dẫn giải AB 1;2;1 , AC x 2; y 5;3 x 2 y 5 3 A, B,C thẳng hàng AB, AC cùng phương x 5; y 11 1 2 1 Câu 46: Trong khơng gian Oxyz cho ba điểm A(1;0;0), B(0;0;1),C(2;1;1) . Tam giác ABC là A. tam giác vuơng tại A .B. tam giác cân tại . A C. tam giác vuơng cân tại A .D. Tam giác đều. Hướng dẫn giải BA 1;0; 1 ,CA 1; 1; 1 ,CB 2; 1;0 BA.CA 0 tam giác vuơng tại A , AB AC . Câu 47: Trong khơng gian Oxyz cho tam giác ABC cĩ A(1;0;0), B(0;0;1),C(2;1;1) . Tam giác ABC cĩ diện tích bằng 6 6 1 A. 6 . B. .C. . D. . 3 2 2 Hướng dẫn giải 1 6 AB 1;0;1 , AC 1;1;1 . S AB.AC ABC 2 2 Câu 48: Ba đỉnh của một hình bình hành cĩ tọa độ là 1;1;1 , 2;3;4 , 7;7;5 . Diện tích của hình bình hành đĩ bằng 83 A. 2 83 . B. 83 . C. 83 . D. . 2 Hướng dẫn giải Gọi 3 đỉnh theo thứ tự là A, B,C
- AB 1;2;3 , AC 6;6;4 2 2 S AB, AC 10 142 6 2 83 hbh Câu 49: Cho 3 vecto a 1;2;1 ; b 1;1;2 và c x;3x; x 2 . Tìm x để 3 vectơ a,b,c đồng phẳng A.B2 C. 1. 2. D. 1. Hướng dẫn giải a,b,c đồng phẳng thì a,b .c 0 x 2. Câu 50: Trong khơng gian Oxyz cho ba vectơ a 3; 2;4 , b 5;1;6 , c 3;0;2 . Tìm vectơ x sao cho vectơ x đồng thời vuơng gĩc với a,b,c A. 1;0;0 . B. 0;0;1 . C. 0;1;0 . D. 0;0;0 . Hướng dẫn giải Dễ thấy chỉ cĩ x (0;0;0) thỏa mãn x.a x.b x.c 0. Câu 51: Trong khơng gianOxyz , cho 2 điểm B(1;2; 3) ,C(7;4; 2) . Nếu E là điểm thỏa mãn đẳng thức CE 2EB thì tọa độ điểm E là 8 8 8 8 8 1 A. 3; ; . B. 3; ; . C. 3;3; . D. 1;2; . 3 3 3 3 3 3 Hướng dẫn giải x 3 8 E(x; y; z) , từ CE 2EB y . 3 8 z 3 Câu 52: Trong khơng gian với hệ trục tọa độ Oxyz , cho ba điểm A(1;2; 1) , B(2; 1;3) ,C( 2;3;3) . Điểm M a;b;c là đỉnh thứ tư của hình bình hành ABCM , khi đĩ P a2 b2 c2 cĩ giá trị bằng A.43. .B. . C. .44. D. 42. 45. Hướng dẫn giải M (x; y; z) , ABCM là hình bình hành thì x 1 2 2 AM BC y 2 3 1 M ( 3;6; 1) P 44 z 1 3 3 Câu 53: Trong khơng gian với hệ trục tọa độ Oxyz cho ba điểm A(1;2; 1) , B(2; 1;3) ,C( 2;3;3) . Tìm tọa độ điểm D là chân đường phân giác trong gĩc A của tam giác ABC A. D(0;1;3) . B. D(0;3;1) . C. D(0; 3;1) . D. D(0;3; 1) . Hướng dẫn giải Ta cĩ AB 26, AC 26 tam giác ABC cân ở A nên D là trung điểm BC D(0;1;3). Câu 54: Trong khơng gian với hệ toạ độ Oxyz , cho các điểm A( 1;3;5) , B( 4;3;2) , C(0;2;1) . Tìm tọa độ điểm I tâm đường trịn ngoại tiếp tam giác ABC 8 5 8 5 8 8 5 8 8 8 8 5 A. I( ; ; ) . B. I( ; ; ) .C. I( ; ; D.) . .I( ; ; ) 3 3 3 3 3 3 3 3 3 3 3 3 Hướng dẫn giải
- Ta cĩ: AB BC CA 3 2 ABC đều. Do đĩ tâm I của đường trịn ngoại tiếp ABC là trọng tâm của nĩ. Kết luận: 5 8 8 I ; ; . 3 3 3 Câu 55: Trong khơng gian Oxyz , cho 3 vectơ a 1;1;0 , b 1;1;0 , c 1;1;1 . Cho hình hộp OABC.O A B C thỏa mãn điều kiện OA a, OB b, OC ' c . Thể tích của hình hộp nĩi trên bằng: 1 2 A. B. 4 C. D. 2 3 3 Hướng dẫn giải OA a, A( 1;1;0),OB b B(1;1;0), OC ' c C '(1;1;1) AB OC C(2;0;0) CC ' ( 1;1;1) OO' V OA,OB OO' OABC.O ' A' B 'C ' Câu 56: Trong khơng gian với hệ trục Oxyz cho tọa độ 4 điểm A 2; 1;1 , B 1;0;0 , C 3;1;0 , D 0;2;1 . Cho các mệnh đề sau: Câu 57: Độ dài AB 2 . Câu 58: Tam giác BCD vuơng tại B . Câu 59: Thể tích của tứ diện ABCD bằng 6 . Các mệnh đề đúng là: A. 2).B. 3). C. 1); 3). D. 2), 1) Câu 60: Trong khơng gianOxyz , cho ba vectơ a 1,1,0 ;b (1,1,0);c 1,1,1 . Trong các mệnh đề sau, mệnh đề nào đúng: 6 A. cos b,c . B. a b c 0. 3 A. a,b,c đồng phẳng.D. a.b 1. Hướng dẫn giải b.c cos(b,c) b . c Câu 61: Trong khơng gian với hệ tọa độ Oxyz , cho tứ diện ABCD , biết A(1;0;1) ,B( 1;1;2) , C( 1;1;0) , D(2; 1; 2) . Độ dài đường cao AH của tứ diện ABCD bằng: 2 1 13 3 13 A. . B. . C. . D. . 13 13 2 13 Hướng dẫn giải AB, AC .AD 1 Sử dụng cơng thức h . AB.AC 13 Câu 62: Cho hình chĩp tam giác S.ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là đẳng thức đúng 1 1 A. B.SI SA SB SC . SI SA SB SC . 2 3 C. SI SA SB SC. D. SI SA SB SC 0. Hướng dẫn giải SI SA AI SI SB BI 3SI SA SB SB AI BI CI SI SC CI
- 1 Vì I là trọng tâm tam giác ABC AI BI CI 0 SI SA SB SC . 3 Câu 63: Trong khơng gian Oxyz , cho tứ diện ABCD cĩ A(1;0;0), B(0;1;0),C(0;0;1), D( 2;1; 1) . Thể tích của tứ diện ABCD bằng 3 1 A. . B. 3 . C. 1 .D. . 2 2 Hướng dẫn giải 1 Thể tích tứ diện: V AB, AC .AD ABCD 6 Câu 64: Cho hình chĩp S.ABC cĩ SA SB a, SC 3a, ·ASB C· SB 600 ,C· SA 900 . Gọi G là trọng tâm tam giác ABC . Khi đĩ khoảng cách SG bằng a 15 a 5 a 7 A. . B. . C. . D. a 3 . 3 3 3 Hướng dẫn giải Áp dụng cơng thức tổng quát: Cho hình chĩp S.ABC cĩ SA a, SB b, SC c và cĩ ·ASB , B· SC ,C· SA . Gọi G là trọng tâm tam giác ABC, khi đĩ 1 SG a2 b2 c2 2abcos 2ac cos 2bc 3 Chứng minh: 1 Ta cĩ: SG SA SB SC 3 2 2 2 2 SA SB SC SA SB SC 2SA.SB 2SA.SC 2SB.SC 1 Khi đĩ SG a2 b2 c2 2abcos 2ac cos 2bc 3 a 15 Áp dụng cơng thức trên ta tính được SG 3 Câu 65: Trong khơng gian tọa độ Oxyz cho ba điểm A 2;5;1 , B 2; 6;2 ,C 1;2; 1 và điểm M m;m;m , để MB 2AC đạt giá trị nhỏ nhất thì m bằng A. 2. B. 3 . C. 1. D. 4. Hướng dẫn giải AC 1; 3; 2 , MB 2 m; 6 m;2 m MB 2AC m2 m2 m 6 2 3m2 12m 36 3 m 2 2 24 Để MB 2AC nhỏ nhất thì m 2 Câu 66: Trong khơng gian tọa độ Oxyz cho ba điểm A 2;5;1 , B 2; 6;2 ,C 1;2; 1 và điểm M m;m;m , để MA2 MB2 MC 2 đạt giá trị lớn nhất thì m bằng A. 3.B. 4.C. 2.D. 1. Hướng dẫn giải MA 2 m;5 m;1 m , MB 2 m; 6 m;2 m , MC 1 m;2 m; 1 m 2 MA2 MB2 MC 2 3m2 24m 20 28 3 m 4 28 Để MA2 MB2 MC 2 đạt giá trị lớn nhất thì m 4 Câu 67: Cho hình chĩp S.ABCD biết A 2;2;6 , B 3;1;8 ,C 1;0;7 , D 1;2;3 . Gọi H là trung điểm của CD, 27 SH ABCD . Để khối chĩp S.ABCD cĩ thể tích bằng (đvtt) thì cĩ hai điểm S , S thỏa mãn yêu cầu bài tốn. Tìm tọa 2 1 2 độ trung điểm I của S1S2 A. I 0; 1; 3 . B. I 1;0;3 C. I 0;1;3 . D. I 1;0; 3 . Hướng dẫn giải
- 1 3 3 Ta cĩ AB 1; 1;2 , AC 1; 2;1 S AB, AC ABC 2 2 9 3 DC 2; 2;4 , AB 1; 1;2 DC 2.AB ABCD là hình thang và S 3S ABCD ABC 2 1 Vì V SH.S SH 3 3 S.ABCD 3 ABCD Lại cĩ H là trung điểm của CD H 0;1;5 Gọi S a;b;c SH a;1 b;5 c SH k AB, AC k 3;3;3 3k;3k;3k Suy ra 3 3 9k 2 9k 2 9k 2 k 1 +) Với k 1 SH 3;3;3 S 3; 2;2 +) Với k 1 SH 3; 3; 3 S 3;4;8 Suy ra I 0;1;3 Câu 68: Trong khơng gian Oxyz , cho hai điểm A(2; 1;7), B(4;5; 2) . Đường thẳng AB cắt mặt phẳng (Oyz) tại điểm M . Điểm M chia đoạn thẳng AB theo tỉ số nào 1 1 2 A. . B. . 2 C. . D. . 2 3 3 Hướng dẫn giải Đường thẳngAB cắt mặt phẳng (Oyz) tại điểm M M (0; y; z) MA (2; 1 y;7 z), MB (4;5 y; 2 z) 2 k.4 1 Từ MA kMB ta cĩ hệ 1 y k 5 y k 2 7 z k 2 z Câu 69: Trong khơng gian Oxyz , cho tứ diện ABCD cĩ A(2;1; 1), B(3;0;1),C(2; 1;3) và D thuộc trục Oy . Biết VABCD 5 và cĩ hai điểm D1 0; y1;0 , D2 0; y2 ;0 thỏa mãn yêu cầu bài tốn. Khi đĩ y1 y2 bằng A. 0. B. .1 C. . 2 D. . 3 Hướng dẫn giải D Oy D(0; y;0) Ta cĩ: AB 1; 1;2 , AD 2; y 1;1 , AC 0; 2;4 AB.AC 0; 4; 2 AB.AC .AD 4y 2 1 V 5 4y 2 5 y 7; y 8 D 0; 7;0 , D 0;8;0 y y 1 ABCD 6 1 2 1 2 Câu 70: Trong khơng gian Oxyz , cho tam giác ABC cĩ A( 1;2;4), B(3;0; 2),C(1;3;7) . Gọi D là chân đường phân giác trong của gĩc A . Tính độ dài OD . 207 203 201 205 A. . B. C. . D. . 3 3 3 3 Hướng dẫn giải Gọi D x; y;z DB AB 2 14 2 DC AC 14 5 x 3 x 2 1 x 3 Vì D nằm giữa B, C (phân giác trong) nên DB 2DC y 2 3 y y 2 z 4 2 z 2 7 z
- 5 205 Suy ra D ;2;4 OD 3 3 Câu 71: Trong khơng gian với hệ toạ độ Oxyz , cho tam giác ABC , biết A(1;1;1) , B(5;1; 2) ,C(7;9;1) . Tính độ dài phân giác trong AD của gĩc A 2 74 3 74 A. . B. . C. 2 74. D. 3 74. 3 2 Hướng dẫn giải D(x; y; z) là chân đường phân giác trong gĩc A của tam giácABC . DB AB 1 17 11 2 74 Ta cĩ DC 2DB D( ; ; 1) AD . DC AC 2 3 3 3 Câu 72: Trong khơng gian với hệ toạ độ Oxyz , cho 4 điểm A(2;4; 1) ,B(1;4; 1) , C(2;4;3) D(2;2; 1) . Biết M x; y; z , để MđạtA giá2 trịM nhỏB2 nhấtM Cthì2 MD2 bằng x y z A. 7. B. 8. C. 9. D. 6. Hướng dẫn giải 7 14 Gọi G là trọng tâm của ABCD ta cĩ: G ; ;0 . 3 3 Ta cĩ: MA2 MB2 MC 2 MD2 4MG2 GA2 GB2 GC 2 GD2 2 2 2 2 7 14 GA GB GC GD . Dấu bằng xảy ra khi M G ; ;0 x y z 7 . 3 3 Câu 73: Trong khơng gian với hệ trục tọa độ Oxyz , cho ba điểm A(2;3;1) , B( 1;2;0) ,C(1;1; 2) . H là trực tâm tam giác ABC , khi đĩ, độ dài đoạn OH bằng 870 870 870 870 A. . B. . C.D. . . 12 14 16 15 Hướng dẫn giải H (x; y; z) là trực tâm của ABC BH AC,CH AB, H (ABC) BH.AC 0 2 29 1 2 29 1 870 CH.AB 0 x ; y ; z H ; ; OH . 15 15 3 15 15 3 15 AB, AC .AH 0 Câu 74: Trong khơng gian với hệ tọa độ Oxyz , cho tam giác ABC cĩ A(3;1;0) , B nằm trên mặt phẳng (Oxy) và cĩ hồnh độ dương, C nằm trên trục Oz và H (2;1;1) là trực tâm của tam giác ABC . Toạ độ các điểm B , C thỏa mãn yêu cầu bài tốn là: 3 177 17 177 3 177 A. B ; ;0 ,C 0;0; . 4 2 4 3 177 17 177 3 177 B. B ; ;0 ,C 0;0; . 4 2 4 3 177 17 177 3 177 C. B ; ;0 ,C 0;0; . 4 2 4 3 177 17 177 3 177 D. B ; ;0 ,C 0;0; . 4 2 4 Hướng dẫn giải Giả sử B(x; y;0) (Oxy),C(0;0; z) Oz .
- AH BC AH.BC 0 H là trực tâm của tam giác ABC CH AB CH.AB 0 AB, AC, AH đồng phẳng AB, AH .AC 0 x z 0 3 177 17 177 3 177 2x y 7 0 x ; y ; z 4 2 4 3x 3y yz z 0 3 177 17 177 3 177 B ; ;0 ,C 0;0; . 4 2 4 Câu 75: Trong khơng gian với hệ tọa độ Oxyz , cho hình vuơng ABCD , B(3;0;8) , D( 5; 4;0) . Biết đỉnh A thuộc mặt phẳng (Oxy ) và cĩ tọa độ là những số nguyên, khi đĩ CA CB bằng: A. B.5 10. C. 6 10. D. 10 6. 10 5. Hướng dẫn giải Ta cĩ trung điểm BD là I( 1; 2;4) ,BD 12 và điểmA thuộc mặt phẳng (Oxy) nên A(a;b;0) . AB2 AD2 (a 3)2 b2 82 (a 5)2 (b 4)2 ABCD là hình vuơng 2 1 2 2 2 AI 2 BD (a 1) (b 2) 4 36 2 17 a b 4 2a a 1 5 17 14 hoặc A(1; 2; 0) hoặc A ; ;0 (loại). Với A(1;2;0) (a 1)2 (6 2a)2 20 b 2 14 5 5 b 5 C( 3; 6;8) . Câu 76: Trong khơng gian với hệ tọa độ Oxyz , cho tam giác ABC , biết A(5;3; 1) ,B(2;3; 4) , C(3;1; 2) . Bán kính đường trịn nội tiếp tam giác ABC bằng: A. B.9 2 6. C. 9 3 6. D. 9 3 6. 9 2 6. Hướng dẫn giải Ta cĩ AC 2 BC 2 9 9 AB2 tam giác ABC vuơng tại C . 1 CA.CB S 3.3 2 Suy ra: r ABC 2 9 3 6 1 p AB BC CA 3 2 3 3 2 Câu 77: Trong khơng gian với hệ trục tọa độ Oxyz , cho ba điểm M 3;0;0 , N m,n,0 , P 0;0; p . Biết MN 13, M· ON 600 , thể tích tứ diện OMNP bằng 3. Giá trị của biểu thức A m 2n2 p2 bằng A. 29. B. 27.C. D.2 8. 30. Hướng dẫn giải OM 3;0;0 ,ON m;n;0 OM.ON 3m OM.ON 1 m 1 OM.ON OM . ON cos600 OM . ON 2 m2 n2 2 2 MN m 3 n2 13 Suy ra m 2;n 2 3
- 1 OM ,ON .OP 6 3p V 6 3p 3 p 3 6 Vậy A 2 2.12 3 29. Câu 78: Trong khơng gian với hệ trục tọa độ Oxyz , cho ba điểm A(2;3;1) ,B( 1;2;0) ,C(1;1; 2) . Gọi I a;b;c là tâm đường trịn ngoại tiếp tam giác ABC . Tính giá trị biểu thức P 15a 30b 75c A. 48. B. C.50 D 52. 46. Hướng dẫn giải I(x; y; z) là tâm đường trịn ngoại tiếp tam giác ABC AI BI CI, I (ABC) AI 2 BI 2 2 2 14 61 1 14 61 1 CI BI x ; y ; z I ; ; P 50. 15 30 3 15 30 3 AB, AC AI 0