Đề đánh giá năng lực Toán ôn tập thi THPT Quốc gia

docx 6 trang thungat 3370
Bạn đang xem tài liệu "Đề đánh giá năng lực Toán ôn tập thi THPT Quốc gia", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxde_danh_gia_nang_luc_toan_on_tap_thi_thpt_quoc_gia.docx

Nội dung text: Đề đánh giá năng lực Toán ôn tập thi THPT Quốc gia

  1. Đề Đánh giá năng lực Toán Ôn tập thi THPT QG 2 Câu 1 (TH): Họ các nguyên hàm F (x) của hàm số ( ) = 3푠푖푛 + ― 푒 là A. 푭(풙) = 풐풔 풙 + 풍풏|풙| ― 풆풙 +푪. B. 푭(풙) = ― 풐풔 풙 ― 풍풏|풙| ― 풆풙 +푪. C. 푭(풙) = ― 풐풔 풙 + 풍풏|풙| ― 풆풙 +푪. D. 푭(풙) = 풐풔 풙 + 풍풏|풙| + 풆풙 +푪. Câu 2 (TH): Hàm số = 3 ― 3 ― 2019 đồng biến trên khoảng A. ( ― ; ) B. ( ― ; ) C. ( ― ; ― ) D. ( ; ) Câu 3 (TH): Cho cấp số cộng ( 푛) có số hạng đầu 1 = 2 và công sai = 5. Giá trị 4 bằng A. 250.B. 17. C. 22. D. 12. Câu 4 (TH): Cho hình nón đỉnh S có bán kính đáy bằng 2. Mặt phẳng (푃) qua S cắt đường tròn đáy tại A, B sao cho = 2 . Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng 17 (푃)là 4 . Thể tích khối nón bằng 17 A. 흅 . B. 흅 . C. 흅 . D. ퟒ흅 . Câu 5 (NB): Với k và n là hai số nguyên dương tùy ý thỏa mãn ≤ 푛. Mệnh đề nào dưới đây đúng? 풏! 풏! 풏! 풌!(풏 ― 풌)! A. 풌 B. 풌 C. 풌 D. 풌 풏 = (풏 ― 풌)!. 풏 = 풌!(풏 ― 풌)!. 풏 = 풌!. 풏 = 풏! . Câu 6 (VDC): Cho hàm số ( ) thỏa mãn ( ) +2 ′( ) = 3 푒― ,∀ ∈ [0; + ∞). Giá trị (1) bằng A. + 풆. B. 풆. C. 풆. D. + 풆. Câu 7 (NB): Trong không gian Oxyz, cho 풖 = 풊 ― 풋 + 풌. Tọa độ của là A. ( ; ; ― ) B. ( ; ― ; ) C. ( ― ; ; ) D. ( ; ; ― ) Câu 8 (NB): Họ nguyên hàm của hàm số ( ) = 2 là A. 풙 B. 풙 C. 풙 D. . + 푪. + 푪. 풙 + 푪. Câu 9 (TH): Tập nghiệm của bất phương trình (0,1) 2+ > 0,01 là A. ( ― ; ). B. ( ―∞; ― ). C. ( ; + ∞). D. ( ―∞; ― ) ∪ ( ; + ∞). Câu 10 (TH): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, 푆 ⊥ ( ) và 푆 = 6 . Giá trị 표푠(푆 ,(푆 )) bằng ퟒ ퟒ A. . B. . C. . D. . ퟒ Câu 11 (TH): Biết ∫ ( ) = 4 푙푛(2 + 1) + với ∈ ― 1 ; + ∞ . Khẳng định nào dưới 2 đây đúng? A. ∫ 풇( 풙)풅풙 = ퟒ 풙 풍풏( 풙 + ) + 푪. B. ∫ 풇( 풙)풅풙 = ퟒ풙 풍풏( 풙 + ) + 푪. C. ∫ 풇( 풙)풅풙 = 풙 풍풏( 풙 + ) + 푪. D. ∫ 풇( 풙)풅풙 = ퟒ풙 풍풏( 풙 + ) + 푪. Zuy-O
  2. Câu 12 (TH): Cho số phức z thỏa mãn (2푖 ― 1) = 4 ― 3푖. Điểm biểu diễn của số phức là A. 푴( ― ; ). B. 푴( ; ― ). C. 푴( ; ). D.푴 ( ― ; ― ). Câu 13 (NB): Nghiệm của phương trình 2 = 16 là A. 풙 = . B. 풙 = ퟒ. C. 풙 = . D. 풙 = 풍풐품 . Câu 14 (VD): Giả sử a, b là các số thực sao cho 3 + 3 = .103 + .102 đúng với mọi các số thực dương x, y, z thỏa mãn 푙표 ( + ) = và 푙표 2 + 2 = + 1. Giá trị của + bằng A. ― . B. . C. ― . D. . Câu 15 (NB): Phần thực và phần ảo của số phức = 1 + 2푖lần lượt là A. 2 và 1. B. 1 và 2. C. 1 và 2푖. D. 1 và i. Câu 16 (TH): Cho hàm số = ( ) có đạo hàm ′( ) = ( + 1)2( ― 3)3,∀ ∈ ℝ. Số điểm cực trị của hàm số là A. 5 B. 3 C. 2 D. 1 2 Câu 17 (TH): Đạo hàm của hàm số ( ) = 푙표 2(3 + 2) là 풙. 풍풏 A. 풇′(풙) = ( 풙 + )풍풏 . B. 풇′(풙) = 풙 + . 풙 풍풏 C. 풇′(풙) = ( 풙 + )풍풏 . D. 풇′(풙) = 풙 + . Câu 18 (TH): Hàm số = ― 4 +2 2 +5 đồng biến trên khoảng A. ( ―∞; ― ) ∪ ( ; ) B. ( ―∞; ― ) và ( ; ) C. ( ; ) và ( ; + ∞) D. ( ; ) Câu 19 (TH): Tập xác định của hàm số = (3 ― 9)― 2 là A. 푫 = ( ―∞; ) B. 푫 = ℝ\{ } C. 푫 = ( ; + ∞) D. 푫 = ℝ Câu 20 (TH): Cho 2 và 2 ; giá trị 2 bằng ∫1 ( ) = 2 ∫1 [2 ( ) ― ( )] = 3 ∫1 ( ) A. 7 B. 5 C. -1 D. 1 Câu 21 (VD): Lớp 12A có 35 học sinh, trong đó có 3 học sinh cùng tên là Trang, 2 học sinh cùng tên là Huy. Xếp ngẫu nhiên 35 học sinh thành một hàng dọc. Xác suất để 3 học sinh tên Trang đứng cạnh nhau và 2 học sinh tên Huy đứng cạnh nhau là A. . B. ퟒ . C. . D. ퟒ . 2 Câu 22 (TH): Gọi 풛 và 2 là hai nghiệm phức của phương trình +2 + 10 = 0. Giá trị biểu thức | 1| + | 2| bằng A. . B. ퟒ . C. . D. . Zuy-O
  3. 2 2018 Câu 23 (VD): Kí hiệu 1, 2 là hai nghiệm phức của phương trình + + 2019 = 0. Giá trị | 1| + | 2| bằng A. . B. . C. . D. . . Câu 24 (VD): Số giao điểm của đồ thị hàm số = 3 ―3 + 1 và đường thẳng 풚 = là A. 0 B. 1 C. 2 D. 3 Câu 25 (VD): Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng 2a, O là trọng tâm tam 6 giác ABC và ′ = 2 . Thể tích của khối lăng trụ ABC . A 'B 'C ' bằng 3 A. B. C. ퟒ D. . . . . Câu 26 (NB): Cho hàm số = ( ) liên tục trên [1; 2]. Quay hình phẳng ( ) = { = ( ), = 0, = 1, = 2} xung quanh trục Ox được khối tròn xoay có thể tích A. 푽 = 흅 B. 푽 = 흅 ∫ 풇(풙)풅풙. ∫ 풇 (풙)풅풙. C. 푽 = D. 푽 = 흅 ∫ 풇 (풙)풅풙. ∫ 풇 (풙)풅풙. Câu 27 (TH): Cho hàm số = ( ) có bảng biến thiên như hình bên. Số đường tiệm cận của đồ thị hàm số = ( ) là ―∞ + A.1 B. 4 x 1 ∞ C. 3 D. 2 ′ - - 1 3 y Câu 28 (NB): Cho hai điểm ( ―1;0;1), 0 ―∞ ( ―2;1;1).Phương trình mặt phẳng trung trực của đoạn AB là A. 풙 ― 풚 ― = . B. 풙 ― 풚 + = . C. 풙 ― 풚 ― = . D. 풙 ― 풚 + = . = 1 ― 2푡 Câu 29 (NB): Đường thẳng = 2 + 3푡,(푡 ∈ ℝ) có một vectơ chỉ phương là = 3 A. 풖 = ( ― ; ; ). B. 풖 = ( ; ; ). C. 풖 = ( ― ; ; ). D. 풖 = ( ; ; ). Câu 30 (NB): Giá trị nhỏ nhất của hàm số = 3 ―7 2 +11 ― 2 trên đoạn [0;2] bằng A. 0. B. 3. C.11. D. ― 2. 2 Câu 31 (VD): Tích các nghiệm thực của phương trình 푙표 2 + 3 ― 푙표 2 = 3 bằng ― + ― + ― ― ― ― A. . B. . C. . D. . . Zuy-O
  4. Câu 32 (NB): Cho hàm số = ( ) có bảng biến thiên như hình bên. Số nghiệm của phương trình 3 ( ) ― 2 = 0 là ―∞ + A. 3 B. 1 x 1 ∞ C. 2 D. 4 ′ - - 1 3 y Câu 33 (VD): Cho 0 4 ―∞ ∫ 푙푛( + 2) = 푙푛 6 + 5 với a, b là các ―1 số nguyên dương. Giá trị 2 + 3 bằng A. 24. B. 26. C. 27. D. 23. Câu 34 (TH): Cho ba điểm ( ―2;0;0), (0;1;0), (0;0; ― 3). Đường thẳng đi qua trực tâm H của tam giác ABC và vuông góc với mp(ABC) có phương trình là 풙 = ― 풕 풙 = ― 풕 풙 = ― 풕 A. 풚 = ― + 풕 B. 풚 = ― + 풕 C. 풚 = + 풕 D. 풛 = ― 풕 풛 = ― 풕 풛 = ― 풕 풙 = ― + 풕 풚 = ― 풕 풛 = ― 풕 Câu 35 (TH): Cho a là số thực dương khác 1. Tính = 푙표 . A. 푰 = ― . B. 푰 = . C. 푰 = . D. 푰 = . Câu 36 (VD): Cho hình chóp tứ giác đều S.ABCD cạnh đáy bằng a. Gọi E là điểm đối xứng với D qua trung điểm của S A; M, N lần lượt là trung điểm AE , BC. Khoảng cách giữa hai đường thẳng MN, SC bằng A. . B. . C. . D. . ퟒ ퟒ ― 1 Câu 37 (VD): Cho đường thẳng :6 = 3 = 2 và ba điểm (2;0;0), (0;4;0), (0;0;6). Điểm ( ; ; ) ∈ thỏa mãn + 2 + 3 đạt giá trị nhỏ nhất. Tính 푆 = + + . ퟒ ퟒ ퟒ A. B. C. D. 푺 = ퟒ . 푺 = ퟒ . 푺 = ― ퟒ . 푺 = ― . Zuy-O
  5. = 푡 Câu 38 (VD): Trong các mặt cầu tiếp xúc với hai đường thẳng 훥1: = 2 ― 푡 ,훥2: = ―4 + 2푡 = ―8 + 2푡 = 6 + 푡 ; phương trình mặt cầu có bán kính nhỏ nhất là = 10 ― 푡 A. (풙 + ) + (풚 + ) + (풛 + ) = . B. (풙 ― ) + (풚 ― ) + (풛 ― ) = . C. (풙 ― ) + (풚 ― ) + (풛 ― ) = . D. (풙 + ) + (풚 + ) + (풛 ― ) = . Câu 39 (VD): Cho hàm số = ( ) có đạo hàm liên tục trên ℝ , hàm số = ′( ) có đồ thị như hình vẽ. Số điểm cực trị của hàm số = (1 ― ) là A. 3. B. 0. C. 1. D. 2. Câu 40 (VD): Cho hàm số = | 3 ― 2 + 9|. Gọi S là tập tất cả các số tự nhiên m sao cho hàm số đồng biến trên [2; + ∞]. Tổng các phần tử của S là A. 6 B. 8 C. 9D. 10 Câu 41 (NB): Hình chóp tứ giác có A. đáy là một tứ giác. B. 6 cạnh. C. 4 đỉnh D. 4 mặt. Câu 42 (VD): Cho hàm số = ( )có bảng biến thiên trên x -1 2 5 đoạn [1;5] như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình (3 푠푖푛 + 2) = có đúng 3 nghiệm phân ′( ) - 0 + 0 4 5 biệt trên khoảng ― ; ? 2 ( ) A. 7 B. 4 -1 C. 6 D. 5 Câu 43 (TH): Cho hai điểm (3; ― 1;2) và (5;3; ― 2). Mặt cầu nhận đoạn AB là đường kính có phương trình là A. (풙 + ퟒ) + (풚 + ) + 풛 = . B. (풙 + ퟒ) + (풚 + ) + 풛 = . C. (풙 ― ퟒ) + (풚 ― ) + 풛 = . D. (풙 ― ퟒ) + (풚 ― ) + 풛 = . 풙 ― 풚 ― 풛 ― Câu 44 (VD): Cho đường thẳng 풅: 풙 = = và hai điểm ( ; ; ― ), ( ; ― ; ). Đường thẳng 훥 qua A và cắt d sao cho khoảng cách từ B đến 훥 nhỏ nhất. Phương trình của 훥 là 풙 풚 + 풛 ― 풙 풚 + 풛 ― 풙 풚 + 풛 + 풙 풚 + A. = ― = B. = = ― C. = = ― D. = ― 풛 + = Zuy-O
  6. Câu 45 (VD): Quay hình phẳng ( ) = = ― 1, = ― 3, = 0 xung quanh trục Ox được khối tròn xoay có thể tích bằng ퟒ흅 흅 흅 흅 A. B. C. D. Câu 46 (VD): Cho số phức z thỏa mãn |풛 + | + |풛 ― | = và . Tính |풛|. ퟒ ퟒ A. |풛| = ퟒ B. |풛| = C. |풛| = D. |풛| = ퟒ Zuy-O