Đề khảo sát chất lượng môn Toán Lớp 12
Bạn đang xem tài liệu "Đề khảo sát chất lượng môn Toán Lớp 12", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_khao_sat_chat_luong_mon_toan_lop_12.doc
Nội dung text: Đề khảo sát chất lượng môn Toán Lớp 12
- 1 Câu 1: Nguyên hàm của hàm số: f x là: 3x 1 1 1 1 A.ln 3x 1 C B. ln 3x 1 C C. ln 3x 1 C D. ln 3x 1 C 2 3 3 Câu 2: Nguyên hàm của hàm số: f x cos 5x 2 là: 1 1 A. sin 5x 2 C B. 5sin 5x 2 C C. sin 5x 2 C D. 5sin 5x 2 C 5 5 Câu 3: Nguyên hàm của hàm số: f x e 4x 1 là: A.e 4x 1 C B. 4e 4x 1 C 1 1 C. e 4x 1 C D. e 4x 1 C 4 4 Câu 4: Nguyên hàm của hàm số: f x tan2 x là: A.tan x C B. tanx-x C C. 2tan x C D. tanx+x C 1 Câu 5: Nguyên hàm của hàm số: f x là: 2x 1 2 1 1 A. C B. C 2x 1 2 4x 1 1 C. C D. C 4x 2 2x 1 3 Câu 6: Một nguyên hàm của hàm số f x cos3x.cos2x là: A.sin x sin5x 1 1 B. sin x sin5x 2 10 1 1 1 1 C. cosx cos5x D. cosx sin5x 2 10 2 10 1 Câu 7: Cho hàm số y f x có đạo hàm là f x và f 1 1 thì f 5 bằng: 2x 1 A. ln2 B. ln3 C. ln2 + 1 D. ln3 + 1 2 Câu 8: Nguyên hàm của hàm f x với F 1 3 là: 2x 1 A. 2 2x 1 B. 2x 1 2 C. 2 2x 1 1 D. 2 2x 1 1 Câu 9: Để F x a.cos2 bx b 0 là một nguyên hàm của hàm số f x sin 2x thì a và b có giá trị lần lượt là: A. – 1 và 1 B. 1 và 1 C. 1 và -1 D. – 1 và - 1 1 Câu 10: Một nguyên hàm của hàm f x 2x 1 e x là: 1 1 1 1 A. x.e x B. x2.e x C. x2 1 .e x D. e x
- Câu 11: Hàm số F x ex e x x là nguyên hàm của hàm số: x x A.f x e e 1 x x 1 2 B. f x e e x 2 x x C. f x e e 1 x x 1 2 D. f x e e x 2 Câu 12: Nguyên hàm F x của hàm số f x 4x3 3x2 2x 2 thỏa mãn F 1 9 là: A.f x x4 x3 x2 2 B. f x x4 x3 x2 10 C. f x x4 x3 x2 2x D. f x x4 x3 x2 2x 10 ex e x Câu 13: Nguyên hàm của hàm số: f x là: e x ex A. x x 1 ln e e C B. C ex e x C. x x 1 ln e e C D. C ex e x Câu 14: Nguyên hàm F x của hàm số f x x sinx thỏa mãn F 0 19 là: x2 x2 A.F x cosx+ B. F x cosx+ 2 2 2 x2 x2 C. F x cosx+ 20 D. F x cosx+ 20 2 2 Câu 15: Cho f ' x 3 5sinx và f 0 10 . Trong các khẳng địn sau đây, khẳng định nào đúng: A.f x 3x 5cosx+2 3 B. f 2 2 C. f 3 D. f x 3x 5cosx+2 e dx Câu 16: Tính tích phân: I . 1 x e A. I 0 B. I 1 C. I 2 D. I 2 Câu 17: Tính tích phân: I cos3 x.sin xdx . 0 1 4 1 A. I 4 C. I 0 D. I 4 B. I 4 e Câu 18: Tính tích phân I xln xdx 1
- 1 e2 2 e2 1 e2 1 A. I B. C. I D. I 2 2 4 4 1 Câu 19: Tính tích phân I x2e2xdx 0 e2 1 e2 1 e2 1 A. I B. C. I D. I 4 4 4 4 1 Câu 20: Tính tích phân I xln 1 x2 dx 0 1 1 1 1 A. I ln 2 B. I ln 2 C. I ln 2 D. I ln 2 2 4 2 2 2 1 Câu 21: Tính tích phân I dx 1 2x 1 A. I ln 2 1 B. I ln3 1 C. I ln 2 1 D. I ln3 1 2 dx Câu 22: Tính tích phân: I . 2 sin x 4 A. I 1 B. I 1 C. I 0 D. I 3 1 Câu 23: Tính tích phân I xexdx 0 A. I 1 B. I 2 C. I 1 D. I 2 2 Câu 24: Tính tích phân I 2x 1 ln xdx 1 1 1 1 A. I 2ln 2 B. I C. I 2ln 2 D. I 2ln 2 2 2 2 Câu 25: Tính tích phân I xsin xdx 0 A. I B. I 2 C. I 0 D. I Câu 26: Tính tích phân I sin2 xcos2 xdx 0 A. I B. I C. I D. I 6 3 8 4 1 Câu 27: Tính tích phân: I x 1 xdx 0 2 4 6 8 A. I B. I C. I D. I 15 15 15 15
- 1 Câu 28: Tính tích phân: I 1 4xdx 2 5 3 9 5 5 9 5 3 9 5 5 9 A. I B. I C. I D. I 6 2 6 2 6 2 6 2 1 x3 Câu 29: Tính tích phân: I dx 4 0 x 1 1 1 1 A. I ln 2 B. I ln 2 C. I ln 2 D. I ln 2 2 4 6 2 Câu 30: Tính tích phân: I xcosxdx 0 A. I B. I 2 C. I 1 D. I 1 2 2 2 2 1 1 ln x Câu 31: Tính tích phân: I dx 1 x e A. I 0 B. I 2 C. I 4 D. I 6 e 1 ln x Câu 32: Đổi biến u ln x thì tích phân dx thành: 2 1 x 0 0 A. 1 u du B. 1 u e udu 1 1 0 0 C. 1 u eudu D. 1 u e2udu 1 1 1 dx Câu 33: Đổi biến x 2sint , tích phân thành: 2 0 4 x 6 6 6 dt 3 A. dt B. tdt C. D. dt 0 0 0 t 0 2 2 Câu 34: Đặt I xsin xdx và J x2 cos xdx . Dùng phương pháp tích phân từng phần để tính J 0 0 ta được: 2 2 A. J 2I B. J 2I 4 4 2 2 C. J 2I D. J 2I 4 4
- 2 n Câu 35: Tích phân: I 1 cosx sin xdx bằng: 0 1 1 1 1 A. B. C. D. n 1 n 1 n 2n 2 cosxdx 2 sinxdx Câu 36: Cho I và J . Biết rằng I = J thì giá trị của I và J bằng: 0 sinx+cosx 0 sinx+cosx A. B. C. D. 4 3 6 2 a x 1 Câu 37: Cho I dx e . Khi đó, giá trị của a là: 2 x 2 e 2 A. B. e C. D. 1 e 2 1 e 10 6 Câu 38: Cho f x lien tục trên [ 0; 10] thỏa mãn: f x dx 7 , f x dx 3 . Khi đó, 0 2 2 10 P f x dx f x dx có giá trị là: 0 6 A. 1 B. 3 C. 4 D. 2 2 Câu 39: Đổi biến u sinx thì tích phân sin4 xcos xdx thành: 0 1 1 2 2 4 2 4 A. u 1 u du B. u4du C. u du D. u3 1 u2 du 0 0 0 0 x 3 dx Câu 40: Đổi biến u tan thì tích phân I thành: 2 0 cos x 1 1 1 1 3 2du 3 du 3 2udu 3 udu A. B. C. D. 2 2 2 2 0 1 u 0 1 u 0 1 u 0 1 u Câu 41: Diện tích hình phẳng được giới hạn bởi đồ thị của hàm số y x3 trục hoành và hai đường thẳng x = - 1, x = 2 là: 15 17 9 A. B. C. 4 D. 4 4 2 Câu 42: Diện tích hình phẳng giới hạn bởi hai đường thẳng x 0, x và đồ thị của hai hàm số y sinx, y=cos x là: A. 2 2 B. 4 2 C. 2 2 D. 2
- Câu 43: Diện tích hình phẳng giới hạn bởi hai đường cong y x3 x và y x x2 là: 9 81 37 A. B. C. 13 D. 4 12 12 Câu 44: Diện tích hình phẳng giới hạn bởi (P) y x3 3 tại x = 2 và trục Oy là: 2 8 4 A. B. 8 C. D. 3 3 3 Câu 45:Hình phẳng giới hạn bởi y x, y x2 có diện tích là: 1 1 1 A. B. C. D. 1 2 6 3 Câu 46: Thể tích khối tròn xoay giới hạn bởi đường cong y sinx , trục hoành và hai đường thẳng x 0, x khi quay quanh trục Ox là: 2 2 2 2 2 A. B. C. D. 2 3 4 3 Câu 47: Cho hình phẳng (S) giới hạn bởi Ox và y 1 x2 . Thể tích khối tròn xoay khi quay (S) quanh trục Ox là: 3 4 3 2 A. B. C. D. 2 3 4 3 Câu 48: Cho hình phẳng giới hạn bởi các đường y x3 1, y 0, x 0, x 1 quay quanh trục Ox. Thể tích của khối tròn xoay tạo thành bằng: 23 13 A. B. C. D. 3 9 14 7 Câu 49: Thể tích khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường y cos x,y=0,x=0,x= quay một vòng quanh trục Ox bằng: 2 2 2 2 2 A. B. C. D. 6 3 4 2 Câu 50: Cho hình phẳng (H) giới hạn bởi các đường y sinx,y=0,x=0,x= . Thể tích vật thể tròn xoay sinh bởi hình (H) quay quanh Ox bằng: A. sin2 xdx B. sin xdx C. sin2 xdx D. sin2 xdx 0 0 2 0 0
- ĐÁP ÁN Câu Chọn Câu Chọn Câu Chọn Câu Chọn Câu Chọn 1 B 11 C 21 B 31 A 41 B 2 A 12 D 22 A 32 B 42 C 3 C 13 A 23 C 33 A 43 D 4 B 14 D 24 A 34 C 44 C 5 B 15 C 25 D 35 D 45 B 6 B 16 C 26 C 36 A 46 A 7 D 17 C 27 B 37 B 47 B 8 C 18 D 28 B 38 C 48 C 9 C 19 A 29 C 39 C 49 C 10 B 20 A 30 D 40 A 50 D