Đề kiểm tra giữa học kỳ I môn Toán Khối 12 - Mã đề 121 - Năm học 2018-2019 - Trường THPT Nguyễn Huệ
Bạn đang xem tài liệu "Đề kiểm tra giữa học kỳ I môn Toán Khối 12 - Mã đề 121 - Năm học 2018-2019 - Trường THPT Nguyễn Huệ", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_kiem_tra_giua_hoc_ky_i_mon_toan_khoi_12_ma_de_121_nam_hoc.doc
Nội dung text: Đề kiểm tra giữa học kỳ I môn Toán Khối 12 - Mã đề 121 - Năm học 2018-2019 - Trường THPT Nguyễn Huệ
- TRƯỜNG THPT NGUYỄN HUỆ ĐỀ KIỂM TRA GIỮA HỌC KỲ I – NH 2018-2019 Môn : TOÁN Khối : 12 Thời gian làm bài: 60 phút (20 câu trắc nghiệm - 6 câu tự luận ) Mã đề thi 121 PHẦN I : Trắc nghiệm ( 6đ) 1 Câu 1: Tìm tất cả các giá trị của m để hàm số y = x 3 - mx 2 - (3m + 2)x + 1 đồng biến trên ¡ . 3 ém > - 1 ém ³ - 1 A. .ê B. . ê C. . D. . - 2 £ m £ - 1 - 2 < m < - 1 êm < - 2 êm £ - 2 ëê ëê Câu 2: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương ánA, B,C, D dưới đây. Hỏi hàm số đó là hàm số nào? A. .y = x 4 -B.2 .x 2 C. . y =D.x 4. + 2x 2 y = - x 4 + 2x 2 y = - x 4 - 2x 2 mx + m2 + 2 Câu 3: Cho hàm số y = . Tính tổng S tất cả các giá trị thực của m để hàm số đạt giá trị x + 1 nhỏ nhất bằng 2 trên đoạn .0;1 A. S = - 1. B. S = 0. C. S = - 2. D. S = 1. 2x + 1 Câu 4: Biết đường thẳng y = x + 2 cắt đường cong y = tại hai điểm A , B . Độ dài đoạnA B bằng 2x - 1 5 2 5 2 9 2 A. . B. . 5 2 C. D. . 4 2 2 Câu 5: Cho hàm số y = f (x) liên tục trên nửa é khoảng ëê- 3;2) và có bảng biến thiên như hình vẽ bên. Khẳng định nào sau đây là khẳng định đúng? A. .miny = - 2 é ëê- 3;2) B. .max y = 3 é ëê- 3;2) é C. Giá trị lớn nhất của hàm số trên ëê- 3;2) đạt được tại x = - 1 . é D. Giá trị nhỏ nhất của hàm số trên ëê- 3;2) đạt được tại x = 1 . Câu 6: Cho hàm số y = f (x) có đồ thị là đường cong như hình vẽ bên. Tìm m để phương trình f (x) = m có 2 nghiệm . A. m < 2. B. m < 0. C. m = 4. D. m < 0 hay m = 4. Trang 1/3 - Mã đề thi 121
- Câu 7: Cho đường thẳng (d) : y = - mx + 1 và đường cong (C) : y = x 3 - 2x 2 - 3x + 1 . Có bao nhiêu giá trị nguyên dương của m để đường thẳng (d) cắt (C) tại ba điểm phân biệt. A. 4. B. 1. C. 3. D. 2. Câu 8: Tìm điểm cực tiểu của đồ thị hàm số y = x 3 - 6x 2 + 9x . A. (4;1). B. (1;4). C. (3;0). D. (0;3). Câu 9: Hàm số: y = x 3 - 3x + 1- m có giá trị cực đại và giá trị cực tiểu trái dấu khi A. .- 1 3 D. . - 1 £ m £ 3 Câu 10: Cho đường cong của hình bên là đồ thị của hàm số y = ax 3 + bx 2 + cx + d , với a, b, c,d là số thực . Mệnh đề nào sau đây là đúng . A. Phương trình y ' = 0 có đúng 1 nghiệm thực . B. Phương trình y = 0 có 2 nghiệm thực phân biệt . C. Phương trình y = 0 vô nghiệm trên tập số thực. D. Phương trình y ' = 0 có 2 nghiệm thực phân biệt . 2x - 1 Câu 11: Xét tính đơn điệu của hàm số y = . x + 1 A. Hàm số luôn nghịch biến trên ¡ \ {- 1}. B. Hàm số đồng biến trên các khoảng (- ¥ ;- 1) và (- 1;+ ¥ ). C. Hàm số nghịch biến trên các khoảng (- ¥ ;- 1) và (- 1;+ ¥ ). D. Hàm số luôn đồng biến trên ¡ \ {- 1}. Câu 12: Cho hàm số y = f (x) có bảng biến thiên như hình vẽ bên. Tìm m để phương trình f (x)+ m = 0 có 3 nghiệm phân biệt. A. m > - 4. B. - 4 < m < 0 . C. m < 0. D. 0 < m < 4. Câu 13: Biết hàm số y = f (x) = x 3 + ax 2 + bx + c đạt cực tiểu tại điểm x = 1 , f (1) = - 3 và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2 . Tính giá trị của hàm số tại x = - 1 . A. .f (- 1) = 4B. . C. f. (- 1) = D.13 . f (- 1) = - 3 f (- 1) = 2 Câu 14: Cho hàm số y = x 4 - 2(m + 1)x 2 + m + 2 có đồ thị (C) . Gọi (D) là tiếp tuyến với đồ thị (C) tại điểm thuộc (C) có hoành độ bằng 1. Tìm m để (D) vuông góc với đường thẳng 1 (d) : y = x - 2016. 4 A. m = - 1 B. m = 1 C. m = 2 D. m = 0 2x - 1 Câu 15: Viết phương trình tiếp tuyến của đồ thị hàm số y = biết hoành độ tiếp điểm là 3 . x - 2 A. .y = 3x -B.1 4. C. .y = 3x -D.4 y = - 3x + 4 y = - 3x + 14 Trang 2/3 - Mã đề thi 121
- x - 2 Câu 16: Tìm tiệm cận đứng của đồ thị hàm số y = ? x 2 - 5x + 6 A. x = 2. B. x = 2 và x = 3 C. x = 3 D. Đồ thị không có tiệm cận đứng. Câu 17: Cho hàm số y = - 2x 3 + 3x 2 + 12x - 5 . Mệnh đề nào sau đây sai? A. Hàm số nghịch biến trên khoảng (- ¥ ;- 3) . B. Hàm số đồng biến trên khoảng (- 1;1) . C. Hàm số nghịch biến trên khoảng (1;+ ¥ ) . D. Hàm số đồng biến trên khoảng (0;2) . 3x + 2 Câu 18: Đồ thị hàm số y = có tiệm cận đứng, tiệm cận ngang là 2 - 3x 2 A. Tiệm cận đứng là x = và tiệm cận ngang: y = - 1 . 3 2 3 B. Tiệm cận đứng là x = và tiệm cận ngang: y = . 3 2 3 - 2 C. Tiệm cận đứng là x = và tiệm cận ngang: y = . 2 3 3 D. Tiệm cận đứng là x = và tiệm cận ngang: y = - 1 . 2 2 3 Câu 19: Cho hàm số y = f (x) có đạo hàm là f ¢ x = x x - 1 x + 2 với mọi x Î R . Số điểm cực trị ( ) ( ) ( ) của hàm số y = f (x) là A. 1. B. 0. C. 2. D. 3. Câu 20: Bảng biến thiên sau là của hàm số nào trong các hàm số cho dưới đây? x + 5 4x - 6 2x - 1 3 - x A. .y = B. . C.y . = D. . y = y = x - 2 x - 2 x + 3 2 - x PHẦN II : Tự luận (4đ) 2x - 1 Câu 1. Xét tính đơn điệu của hàm số y = . ( 0.5đ ) x + 1 1 Câu 2. Tìm tất cả các giá trị của m để hàm số y = x 3 - mx 2 - (3m + 2)x + 1 đồng biến trên ¡ .(1đ ) 3 Câu 3. Tìm m để hàm số: y = x 3 - 3x + 1- m có giá trị cực đại và giá trị cực tiểu trái dấu. ( 0.5đ ) 2x - 1 Câu 4. Viết phương trình tiếp tuyến của đồ thị hàm số y = biết hoành độ tiếp điểm là 3. (0.5đ ) x - 2 Câu 5. Tìm các điểm cực tiểu của đồ thị hàm số y = x 3 - 6x 2 + 9x . ( 1đ ) 2x + 1 Câu 6. Biết đường thẳng y = x + 2 cắt đường cong y = tại hai điểm A ,B . Tính độ dài đoạn AB . 2x - 1 ( 0.5đ ) HẾT Trang 3/3 - Mã đề thi 121