Đề ôn tập kiểm tra môn Toán - Đề số 4
Bạn đang xem tài liệu "Đề ôn tập kiểm tra môn Toán - Đề số 4", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_on_tap_kiem_tra_mon_toan_de_so_4.docx
Nội dung text: Đề ôn tập kiểm tra môn Toán - Đề số 4
- ĐỀ ÔN TẬP KIỂM TRA 4 x Câu 1: Cho hàm số f x e 2 . Mệnh đề nào sau đây đúng 1 x x A.f x dx e 2 C B. f x dx 2e 2 C 2 1 x x C.D. f x dx e 2 C f x dx 2e 2 C 2 Câu 2: Nếu u(x) và v(x) là hai hàm số có đạo hàm liên tục trên đoạn a;b . Mệnh đề nào sau đây đúng b b b b b b A. udv uv vdv B. (u v)dx u.dx v.dx a a a a a a b b b b a b C. uvdx ( udx).( vdx) D. udv uv |a vdu a a a a b 2 Câu 3: Một nguyên hàm của hàm số f x x 3 trên R là: x 3 3 A. F x x B. F x 2(x 3) 3 x 3 3 C. F x 2017 D. F x 3(x 3)3 3 1 2 Câu 4: Biết x. f (x)dx 3 . Khi đó sin 2x. f (cos x)dx bằng: 0 0 A. 3 B. 8 C. D4. 6 a Câu 5: Có bao nhiêu giá trị của a thỏa: 2x 5 dx a 4 . 0 A. 0 B. 1 C. D2. vô số b 2 Câu 6: Nếu xdx b a 0 thì: a 3 A.b2 a2 1 B. b b a a 1 C.b a 1 D.b a 1 2 ln x Câu 7: Tính tích phânI dx ta có: 1 x ln2 2 ln2 2 A.I 2 B. I C.I ln 2 D. I 2 2 Câu 8: Tính S là diện tích của hình phẳng giới hạn bởi C : y xex trục hoành và đường thẳng x a, a 0 . A. S aea ea 1 B. S aea ea 1 C. DS. aea ea 1 S aea ea 1 Câu 9: Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = 2x – x2 và y = 0. Tính thể tích vật thể tròn xoay được sinh ra bởi hình phẳng (H) khi nó quay quanh trục Ox.
- 16 17 18 19 B. C. D. A. 15 15 15 15 Câu 10: Phương trình nào sau đây là phương trình của mặt cầu: A. x2 y2 z2 10xy 8y 2z 1 0 C. x2 y2 z2 2x 4y 4z 2017 0 2 B. 3x2 3y2 3z2 2x 6y 4z 1 0 D. x2 y z 2x 4 y z 9 0 Câu 11: Phương trình mặt cầu tâm I(1; 2; 3) và bán kính R 3 là: 2 2 2 2 2 2 A. x y z 2x 4y 6z 5 0 C. (x 1) (y 2) (z 3) 9 B. (x 1)2 (y 2)2 (z 3)2 9 D. (x 1)2 (y 2)2 (z 3)2 3 Câu 12: Phương trình mặt phẳng (P) đi qua điểm M ( 1;2;0) và có VTPTn (4;0; 5) là: A. 4x 5y 4 0 B. 4x 5z 4 0 C. 4x 5y 4 0 D. 4x 5z 4 0 Câu 13: Mặt phẳng đi qua ba điểm A(0;0; 2) B(1;0;0) và C(0;3;0) có phương trình là: x y z x y z x y z x y z A. 1 B. 1 C. 1 D. 1 1 3 2 1 3 2 2 1 3 2 1 3 Câu 14: Khoảng cách từ A(0;2;1) đến mặt phẳng (P): 2x y 3z 5 0 bằng: 6 4 A. B. 6 C. 4 D. 14 14 Câu 15: Mặt phẳng ( ) : 2x 5y z 1 0 có 1 vectơ pháp tuyến là: A. n (2;5; 1) B. m (2;5;1) C. a ( 2;5; 1) D. b ( 4;10;2) Câu 16: Giá trị của m để hai mặt phẳng ( ) : 7x 3y mz 3 0 và ( ) : x 3y 4z 5 0 vuông góc với nhau là: A. 6 B. 4 C. 1 D. 2 x 1 t Câu 17: Cho(d) : y 2 2t (t ¡ ) . Điểm nào sau đây không thuộc đường thẳng z 3 t (d). A. M(0;4;2) B. N(1;2;3) C. P(1;–2;3) D. Q(2;0;4) Câu 18: Phương trình tham số của đường thẳng (d) đi qua hai điểm A(1;2; 3 )và B(3; 1;1) là : x 1 t x 1 3t x 1 2t x 1 2t A. y 2 2t B. y 2 t C. y 2 3t D. y 5 3t z 1 3t z 3 t z 3 4t z 7 4t x 1 y z Câu 19: Đường thẳng vuông góc với mặt phẳng nào trong các mặt 3 2 1 phẳng sau đây: A. 6x 4y 2z 1 0 B. 6x 4y 2z 1 0 C. 6x 4y 2z 1 0 D. 6x 4y 2z 1 0 3 3 Câu 20. Biết f (x)dx 5. Giá trị của 5 f (x)dx bằng 2 2 A. 25. B. 10. C.15. D.5.
- Câu 21. Cho F(x) là một nguyên hàm của hàm số f (x) trên đoạn a;b . Mệnh đề nào dưới đây đúng ? b b A. f (x)dx F(b) F(a). B. f (x)dx F(a) F(b). a a b b C. f (x)dx F(b) F(a). D. f (x)dx F(b) F(a). a a Câu 22. Cho hàm số f (x) liên tục và không âm trên đoạn a;b. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số y f (x ,) trục O xvà 2đường thẳng x a, x b được tính theo công thức nào dưới đây ? b b A. S f x dx. B. S f x dx. a a b b 2 C. S f x dx. D. S f x dx. a a Câu 23.Diện tích của hình phẳng giới hạn bởi các đường y x, y 2x2 , x 0, x 1 được tính theo công thức nào dưới đây ? 1 1 1 1 A. .SB. .C. 2.D.x2 x dx S .2x2 x dx S x 2x2 dx S 2x2 x dx 0 0 0 0 Câu 24. Cho hình phẳng giới hạn bởi đồ thị của hàm số y f (x )liên tục và không âm trên đoạn 1;3 , trục Ox và hai đường thẳng x 1, x 3 quay quanh trục Ox, ta được khối tròn xoay. Thể tích của khối tròn xoay này được tính theo công thức nào dưới đây ? 3 3 3 3 2 2 V f (x) dx.B. V f (x) dx. C.V f (x)dx. D. V f (x)dx. 1 1 1 1 A. Câu 25. Trong không gian Oxyz, cho a 2.i 3. j k. Tọa độ của vectơ a là A. 2;3; 1 . B. 3;2; 1 . C 1;2;3 . D. 2; 1;3 . Câu 26. Trong không gian Oxyz,vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P) : 2x y 5z 1 0 ? A. n 2; 1; 5 . B. n 2;1; 5 . C. n 2;1;5 . D. n 2; 1;5 . 1 2 3 4 Câu 27. Trong không gian Oxyz, điểm nào dưới đây thuộc mặt phẳng (P) : x y 2z 1 0 ? A. M 1;2;0 . B. M 1;2;1 . C. M 1;3;0 . D. M 1;2;0 . 1 2 3 4 Câu 28. Trong không gian Oxyz, phương trình nào dưới đây là phương trình của đường thẳng đi qua điểm M(2;1; 3) và có vectơ chỉ phương u (1; 1;2) ? x 2 t x 1 2t x 2 t x 2 t A. y 1 t .B. y 1 t . C. y 1 t . D. . y 1 t z 3 2t z 2 3t z 3 2t z 3 2t
- Câu 29. Trong không gian Oxyz, vectơ nào dưới đây là một vectơ chỉ phương của x 1 t đường thẳng d : y 2 3t ? z 1 t A. u 1;3;1 . B. u 1;3;1 . C. u 1; 2; 1 . D. u 1;3; 1 . 1 2 3 4 Câu 30. Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng x 3 2t d : y 1 3t ? z 1 t A. M 3;1; 1 . B. M 2; 3;1 . C. M 1;3; 1 . D. M 3; 1;1 . 1 2 3 4 Câu 31. Họ nguyên hàm của hàm số f (x) sin 2x là 1 1 A. cos 2x C . B. cos 2x C C. cos 2x C . D. cos 2x C . 2 2 1 Câu 32. Giá trị của e xdx bằng bao nhiêu ? 0 e 1 1 e 1 A. B. . C. e 1 . D. . e e e 3 10 Câu 33. Cho hàm số f x liên tục trên ¡ , thỏa mãn f x dx 6 và f x dx 3. 0 3 10 Giá trị của f x dx bằng bao nhiêu ? 0 A. 9. B. 18. C. 3. D. 30. 2 2 2 Câu 34.Cho f x dx 2 và g x dx 1 . Giá trị 2 f x 3g x dx bằng bao 1 1 1 nhiêu ? A. 1. B. 7. C. 5. D. 4. Câu 35. Cho hàm số y f (x) có đồ thị là đường cong trong hình bên. Diện tích hình phẳng gạch chéo được tính theo công thức nào dưới đây ? 3 3 A.S f (x)dx. B. S f (x)dx. 0 0 3 3 2 2 C. S f (x) dx. D. S f (x) dx. 0 0 Câu 36.Cho hình thang cong H giới hạn bởi các đường y ex , y 0, x 1, x 1 . Thể tích của vật thể tròn xoay được tạo thành khi cho hình H quay quanh trục hoành được tính theo công thức nào dưới đây ?
- 1 1 1 1 A. V e2xdx . B. V e2xdx . C. V exdx . D. V exdx. 1 1 1 1