Đề thi thử THPT Quốc gia lần 1 môn Toán Lớp 12 - Mã đề 485 - Năm học 2017-2018 - Trường THPT Lý Thái Tổ

pdf 6 trang thungat 1440
Bạn đang xem tài liệu "Đề thi thử THPT Quốc gia lần 1 môn Toán Lớp 12 - Mã đề 485 - Năm học 2017-2018 - Trường THPT Lý Thái Tổ", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfde_thi_thu_thpt_quoc_gia_lan_1_mon_toan_lop_12_ma_de_485_nam.pdf

Nội dung text: Đề thi thử THPT Quốc gia lần 1 môn Toán Lớp 12 - Mã đề 485 - Năm học 2017-2018 - Trường THPT Lý Thái Tổ

  1. toanpt.com – kho tài liệu toán SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC NINH ĐỀ THI THỬ THPT QUỐC GIA LẦN 1 NĂM HỌC 2017-2018 TRƯỜNG THPT LÝ THÁI TỔ Môn: Toán Thời gian làm bài: 90 phút (không kể thời gian giao đề) Ngày thi: 03 tháng 03 năm 2018 ĐỀ CHÍNH THỨC Họ, tên thí sinh: Số báo danh: Mã đề 485 Câu 1: Trong mặt phẳng với hệ trục tọa độ O x y, cho AB( 2 ; 3 ) , ( 1 ;0 ) . Phép tịnh tiến theo u ( 4 ; 3 ) biến điểm AB, tương ứng thànhAB'',.Khi đó, độ dài đoạn thẳng AB'' bằng: A. AB'' 10 B. AB'' 10. C. AB'' 5. D. AB'' 1 3 . Câu 2: Hình chópS A. B C D đáy là hình chữ nhật có ABaADa,2. SA vuông góc với mặt phẳng đáy, S A a 3. Thể tích khối chóp là: 23a 3 a 3 3 26a 3 A. . B. . C. a 3 3. D. . 3 3 3 Câu 3: Đồ thị sau đây là của hàm số nào ? 21x x 1 x 2 21x A. y B. y . C. y D. y . x 1 x 1 1 x x 1 Câu 4: Khoảng đồng biến của hàm số yxxx 32391 là: A. ;1 B. 1 ;3 . C. ;13; D. 3 ;1 . Câu 5: Trong các mệnh đề sau. Mệnh đề sai là A. Hai mặt phẳng cùng song song với một mặt phẳng thì song song với nhau. B. Một mặt phẳng cắt hai mặt phẳng song song cho trước theo hai giao tuyến thì hai giao tuyến song song với nhau. C. Hai mặt phẳng song song thì không có điểm chung. D. Hai mặt phẳng song song với nhau thì mọi đường thẳng nằm trong mặt phẳng này đều song song với mặt phẳng kia. Câu 6: Cho a là một số dương lớn hơn 1. Mệnh đề nào dưới đây sai ? A. logloglogaaaxyxy với x 0 và y 0. B. logaa 10;log1. a C. loga x có nghĩa với mọi x 0. 1 D. logxx log với và n an n a Trang 1/6 - Mã đề thi 485
  2. toanpt.com – kho tài liệu toán 23x Câu 7: Gọi I là giao điểm của hai đường tiệm cận của đồ thị hàm số y . Khi đó, điểm I nằm trên x 1 đường thẳng có phương trình: A. 2xy 2 0 . B. 2xy 4 0 . C. xy4 0 . D. xy4 0 . Câu 8: Hàm số nào sau đây có ba điểm cực trị? 21x A. y x x 422. B. y . x 1 1 C. yxxx 32372. D. yxx 4221. 3 Câu 9: Số véc- tơ khác 0 có điểm đầu, điểm cuối là hai trong 6 đỉnh của lục giác ABCDEF là: 2 2 A. A6 . B. P6. C. C 6 . D. 36. 2 sinx Câu 10: Cho tích phân dxab ln 5ln2 với ab,. Mệnh đề nào dưới đây đúng ? cos2x 3 A. 2ab 0 . B. 2ab 0 . C. ab2 0 . D. ab2 0 . x 1 Câu 11: Phương trình tiếp tuyến của đồ thị hàm số y tại điểm có hoành độ bằng 3 là: x 2 A. yx3 5 . B. yx3 5 . C. yx3 1 3 . D. yx3 1 3 . xx2 43 khi x 1 Câu 12: Tìm m để hàm số fx() x 1 liên tục tại điểm x 1. mxkhi21 x A. m 0 B. m 4 . C. m 4 . D. m 2. . Câu 13: Cho hình chóp đều SABCD. có cạnh đáy 2a và cạnh bên a 6 .Tính diện tích của mặt cầu ngoại tiếp hình chóp A. 9.a 2 B. 18a 2 . C. 18a . 2 D. 9.a2 31x Câu 14: Gọi m là giá trị nhỏ nhất của hàm số y trên 1;1 . Khi đó, giá trị của là: x 2 2 2 A. m B. m 4 C. m . D. m 4. 3 3 21xx Câu 15: Phương trình 328.390. có hai nghiệm là xxxx1212,. Tính giá trị T x122. x A. T 3. B. T 0. C. T 4. D. T 5. Câu 16: Trong các hàm số sau, hàm số nào nghịch biến trên ? x x 2 e A. yxlog . B. y . C. yxlog . D. y . 1 3 5 3 2 Câu 17: Gọi là nghiệm lớn nhất thuộc khoảng 0;2 của phương trình 3cosx cos2 x cos3 x 1 2sin x .sin2 x Tính sin? 4 2 2 A. B. C. 0. D. 1. 2 2 Trang 2/6 - Mã đề thi 485
  3. toanpt.com – kho tài liệu toán Câu 18: Cho hai mặt phẳng : 32270,:xyzxyz 54310 . Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả và là: A. 2x 2 y0 z. B. 2x 2 y0 z. C. 2x 2 y0 z. D. 2210.xyz Câu 19: Cho mặt phẳng :23410xyz . Khi đó, một véc- tơ pháp tuyến của A. n ( 2 ; 3 ;4 ) B. n ( 2 ;3 ; 4 ) C. n ( 2 ;3 ;4 ) D. n ( 2 ;3 ;1 ) Câu 20: Cho điểm ABCD(2;0;0),(0;2;0),(0;0;2),(2;2;2) .Mặt cầu ngoại tiếp tứ diện ABCD có bán kính là : 3 2 A. 3. B. 3. C. D. . 2 3 45nn2 Câu 21: Cho giới hạn I lim . Khi đó, giá trị của I là 41nn2 5 3 A. I . B. I 1. C. I 1. D. I . 3 4 275xx2 Câu 22: Tính nguyên hàm Idx x 3 A. IxxxC222 ln3. B. IxxxC222 ln3. C. IxxxC2 2 ln3. D. IxxxC2 2 ln3. Câu 23: Mệnh đề nào dưới đây đúng ? 56 67 76 65 33 33 44 22 A. B. C. D. 44 22 33 33 Câu 24: Tìm tất cả các giá trị của m để hàm số y m1 x32 3 m 1 x 3 x 2 đồng biến biến trên ? A. 12. m B. 12. m C. 12. m D. 12. m ux2 Câu 25: Tính tích phân Ixxdx 2 cos2 bằng cách đặt Mệnh đề nào dưới đây đúng ? dvxdxcos2 0 1 1 A. Ixxxxdx2 sin2sin2. B. Ixxxxdx2 sin22sin2. 2 0 2 0 0 0 1 1 C. I x2 sin2 x x sin2 xdx . D. I x2 sin2 x 2 x sin2 xdx . 2 0 2 0 0 0 5 2 5 Câu 26: Cho hai tích phân fx()8 dx và g( x ) dx 3 Tính I f( x ) 4 g ( x ) 1 dx 2 5 2 A. I 13. B. I 3. C. I 27. D. I 11. Câu 27: Tìm nguyên hàm của hàm số f( x ) x sin6 x xx2 sin 6 xx2 cos 6 A. f() x dx C B. f() x dx C 26 26 xx2 sin 6 xx2 cos 6 C. f() x dx C D. f() x dx C 26 26 Trang 3/6 - Mã đề thi 485
  4. toanpt.com – kho tài liệu toán Câu 28: Hình chópS ABC. có đáy là tam giác vuông tại B có ABaACa,2. SA vuông góc với mặt phẳng đáy, SA a 2. Gọi là góc tạo bởi hai mặt phẳng SAC SBC, . Tính c o s ? 3 1 15 3 A. . B. . C. . D. . 5 2 5 2 Câu 29: Tập xác định của hàm số yxt a n2 là 1 y 2s in 2 1x A. Dkk \, B. Dkk \, 2 2 C. Dkk \, D. Dkk \, 42 4 Câu 30: Cho hình chóp S ABC. có đáy A B C là tam giác vuông tại B với ABaBCa,3. Cạnh SA vuông góc với mặt phẳng đáy và SA23 a .Tính bán kính R của mặt cầu ngoại tiếp hình chóp S A B C A. Ra4. B. Ra3. C. Ra2. D. Ra. Câu 31: Cho tam giác A B C với ABC(2;3;2);(1;2;2),(1;3;3) .Gọi A''' B,, C lần lượt là hình chiếu vuông góc của A,, B C lên mặt phẳng :2230.xyz Khi đó, diện tích tam giác ABC'''.bằng: 1 3 3 A. 1. B. . C. . D. . 2 2 2 Câu 32: Cho hàm số fx()có đạo hàm trên thỏa mãn fxf'20172018( )2018xxe ( )2018 x với mọi x và f (0)2018. Tính giá trị f (1) . A. fe(1)2019 2018 B. fe(1)2018. 2018 C. fe(1)2018. 2018 D. fe(1)2017. 2018 Câu 33: Một người lần đầu gửi ngân hàng 200 triệu đồng với kì hạn 3 tháng, lãi suất 4% / quý và lãi từng quý sẽ được nhập vào vốn. Sau đúng 6 tháng, người đó gửi thêm 150 triệu đồng với kì hạn và lãi suất như trước đó. Hỏi tổng số tiền người đó nhận được sau hai năm kể từ khi gửi thêm tiền lần hai là bao nhiêu ? A. 4 6 3 ,5 1triệu đồng B. 5 2 1,3 9 triệu đồng C. 5 0 1,3 3 triệu đồng D. 4 8 0 ,0 5 triệu đồng 3 Câu 34: Cho hàm số yxx 3.có đồ thị là ()C .M1 là điểm trên ()C có hoành độ bằng 1. Tiếp tuyến tại điểm cắt tại điểm M 2 khác . Tiếp tuyến tại điểm M 2 cắt tại điểm M 3 khácM 2 , Tiếp tuyến tại điểm Mn 1 cắt tại điểm M n khácMnnNn 1 4, ? Tìm số tự nhiên n thỏa mãn điều kiện 21 yxnn320. A. n 21. B. n 7. C. n 8. D. n 22. 24x Câu 35: Cho hàm số y có đồ thị C và điểm A( 5;5). Tìm m để đường thẳng yxm x 1 cắt đồ thị C tại hai điểm phân biệt M và N sao cho tứ giác OAMN là hình bình hành (O là gốc tọa độ). m 0 A. m 0. B. m 2. C. m 2. D. . m 2 Trang 4/6 - Mã đề thi 485
  5. toanpt.com – kho tài liệu toán Câu 36: Trong hội chợ tết Mậu Tuất 2018, một công ty sữa muốn xếp 900 hộp sữa theo số lượng 1,3,5, từ trên xuống dưới (số hộp sữa trên mỗi hàng xếp từ trên xuống là các số lẻ liên tiếp - mô hình như hình bên). Hàng cuối cùng có bao nhiêu hộp sữa? A. 59 B. 30 C. 61 D. 57 Câu 37: Đội học sinh giỏi trường THPT Lý Thái Tổ gồm có 8 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Chọn ngẫu nhiên 8 học sinh. Xác suất để trong 8 học sinh được chọn có đủ 3 khối là: 71131 71128 143 35582 A. . B. . C. . D. . 75582 75582 153 3791 3 sinxx cos 4 Câu 38: Tính tổng tất cả các giá trị nguyên của hàm số y . 2 sinxx cos 3 A. 6. B. 5. C. 9. D. 8. Câu 39: Một hình trụ có đường cao 1 0(cm ) và bán kính đáy bằng 5(cm ) .Gọi ()P là mặt phẳng song song với trục của hình trụ và cách trục 4(cm ) . Tính diện tích thiết diện của hình trụ khi cắt bởi . A. 4 0(cm ) . 2 B. 6 0(cm ) . 2 C. 8 0(cm ) . 2 D. 3 0(cm ) . 2 32 Câu 40: Cho ()Cyxmxmx :23364.m Gọi T là tập các giá trị của m thoả mãn()C m có đúng hai điểm chung với trục hoành, tính tổng S các phần tử của ? 2 8 A. S 6. B. S . C. S 7. D. S . 3 3 3 31 Câu 41: Trong không gian với hệ tọa độ O x y z, choABCD(1;2;3),(;;),(1;1;4),(5;3;0). 2 22 3 Gọi ()S là mặt cầu tâm A bán kính bằng 3, ()S là mặt cầu tâm B bán kính bằng .Có bao nhiêu mặt 1 2 2 phẳng tiếp xúc với 2 mặt cầu (),()SS12đồng thời song song với đường thẳng đi qua 2 điểm CD,. A. 2. B. 4. C. Vô số. D. 1. 1221 31 Câu 42: Sau khi khai triển và rút gọn biểu thức f( xxx )2 23thì fx()có bao nhiêu số x x 2 hạng ? A. 30. B. 32. C. 35. D. 29. Câu 43: Cho hình lập phương ABCD. ABC'''' D có cạnh bằng a.Gọi K là trung điểm của DD' . Tính khoảng cách giữa hai đường thẳng CKAD,'. 2a 3a a A. a. B. . C. . D. . 5 8 3 37x Câu 44: Bất phương trình log log 0. có tập nghiệm là ab; .Tính giá trị P3. a b 21x 3 3 P 3. a b A. P 5. B. P 4. C. P 7. D. P 10. Trang 5/6 - Mã đề thi 485
  6. toanpt.com – kho tài liệu toán Câu 45: Cho điểm M nằm trên cạnh SA, điểm N nằm trên cạnh SB của khối chóp tam giác S. ABC SMSN 1 sao cho ,2. Mặt phẳng qua MN và song song với SC chia khối chóp thành 2 phần. MANB2 V1 Gọi V1 là thể tích của khối đa diện chứa A, V2 là thể tích của khối đa diện còn lại. Tính tỉ số ? V2 V 5 V 6 V 5 V 4 A. 1 . B. 1 . C. 1 . D. 1 . V2 6 V2 5 V2 4 V2 5 2 2 xxxxx2coscos1sin c Câu 46: Cho tích phân Idxab 2 ln. với a b,, c là xxcos 0 các số hữu tỉ. Tính giá trị của biểu thức P a c b 3 . 3 5 A. P . B. P 3. C. P . D. P 2. 2 4 Câu 47: Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt 4 lên đỉnh của ba khối nón một khối cầu có bán kính bằng lần bán kính 3 đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào 337 ra là ().cm3 Tính thể tích nước ban đầu ở trong bể. 3 A. 1174,2()cm3 B. 1209,2()cm3 C. 885,2()cm3 D. 1106,2()cm3 m323 3 mx 2 13 x 1 2 1 Câu 48: Cho phương trình 2.log31 22.log0.xx32 Gọi S 813 32 mm 31 2 là tập hợp tất cả các giá trị m nguyên để phương trình đã cho có số nghiệm thuộc đoạn [6;8]. Tính tổng bình phương tất cả các phần tử của tập S. A. 10 B. 20 C. 14 D. 28 4ba a Câu 49: Cho ab, là các số dương thỏa mãn logloglog.ab Tính giá trị ? 425 2 b a a 35 a 35 a A. 6 2 5. B. . C. . D. 6 2 5. b b 8 b 8 b 1 Câu 50: Cho hàm số y log2018 có đồ thị C1 và hàm số yfx có đồ thị C2 . Biết C1 và x C2 đối xứng nhau qua gốc tọa độ. Hỏi hàm số yfx nghịch biến trên khoảng nào sau đây? A. 1;0 . B. 0;1. C. 1; . D. ;1. HẾT Thí sinh không được sử dụng tài liệu.Cán bộ coi thi không giải thích gì thêm. Trang 6/6 - Mã đề thi 485