Bộ đề thi môn Toán - Kỳ thi tuyển sinh vào Lớp 10 THPT - Năm học 2012-2013

doc 67 trang thungat 4510
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề thi môn Toán - Kỳ thi tuyển sinh vào Lớp 10 THPT - Năm học 2012-2013", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docbo_de_thi_mon_toan_ky_thi_tuyen_sinh_vao_lop_10_thpt_nam_hoc.doc

Nội dung text: Bộ đề thi môn Toán - Kỳ thi tuyển sinh vào Lớp 10 THPT - Năm học 2012-2013

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT HÀ NỘI Năm học: 2012 – 2013 ĐỀ CHÍNH THỨC Môn thi: Toán Ngày thi: 21 tháng 6 năm 2012 Thời gian làm bài: 120 phút Bài I (2,5 điểm) 1) Cho biểu thức x 4 A . Tính giá trị của A khi x = 36 x 2 x 4 x 16 2) Rút gọn biểu thức B : (với x 0;x 16 ) x 4 x 4 x 2 3) Với các của biểu thức A và B nói trên, hãy tìm các giá trị của x nguyên để giá trị của biểu thức B(A – 1) là số nguyên Bài II (2,0 điểm). Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: 12 Hai người cùng làm chung một công việc trong giờ thì xong. Nếu mỗi người làm một mình thì 5 người thứ nhất hoàn thành công việc trong ít hơn người thứ hai là 2 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao nhiêu thời gian để xong công việc? Bài III (1,5 điểm) 2 1 2 x y 1) Giải hệ phương trình: 6 2 1 x y 2) Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (ẩn x). Tìm m để phương trình có hai nghiệm 2 2 phân biệt x1, x2 thỏa mãn điều kiện : x1 x2 7 Bài IV (3,5 điểm) Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M khác A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB. 1) Chứng minh CBKH là tứ giác nội tiếp. 2) Chứng minh A· CM A· CK 3) Trên đọan thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C 4) Gọi d là tiếp tuyến của (O) tại điểm A; cho P là điểm nằm trên d sao cho hai điểm P, C nằm trong AP.MB cùng một nửa mặt phẳng bờ AB và R . Chứng minh đường thẳng PB đi qua trung điểm của đoạn MA thẳng HK Bài V (0,5 điểm). Với x, y là các số dương thỏa mãn điều kiện x 2y , tìm giá trị nhỏ nhất của biểu thức: x2 y2 M xy 1
  2. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2012 – 2013 ĐỀ CHÍNH THỨC MÔN: TOÁN Thời gian làm bài: 120 phút Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) 2x2 x 3 0 2x 3y 7 b) 3x 2y 4 c) x4 x2 12 0 d) x2 2 2x 7 0 Bài 2: (1,5 điểm) 1 1 a) Vẽ đồ thị (P) của hàm số y x2 và đường thẳng (D): y x 2 trên cùng một hệ trục toạ độ. 4 2 b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính. Bài 3: (1,5 điểm) Thu gọn các biểu thức sau: 1 2 x 1 A với x > 0; x 1 x x x 1 x x B (2 3) 26 15 3 (2 3) 26 15 3 Bài 4: (1,5 điểm) Cho phương trình x2 2mx m 2 0 (x là ẩn số) a) Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi m. b) Gọi x1, x2 là các nghiệm của phương trình. 24 Tìm m để biểu thức M = 2 2 đạt giá trị nhỏ nhất x1 x2 6x1x2 Bài 5: (3,5 điểm) Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME<MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO). a) Chứng minh rằng MA.MB = ME.MF b) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp. c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC. d) Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng. 2
  3. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.ĐÀ NẴNG Năm học: 2012 – 2013 MÔN: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Bài 1: (2,0 điểm) 1) Giải phương trình:(x + 1)(x + 2) = 0 2x y 1 2) Giải hệ phương trình: x 2y 7 Bài 2: (1,0 điểm) Rút gọn biểu thức A ( 10 2) 3 5 y Bài 3: (1,5 điểm) y=ax2 Biết rằng đường cong trong hình vẽ bên là một parabol y = ax2. 1) Tìm hệ số a. 2) Gọi M và N là các giao điểm của đường thẳng y = x + 4 với parabol. Tìm tọa độ của các điểm M và N. 2 Bài 4: (2,0 điểm) x 0 Cho phương trình x2 – 2x – 3m2 = 0, với m là tham số. 1 2 1) Giải phương trình khi m = 1. 2) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa điều kiện x x 8 1 2 . x2 x1 3 Bài 5: (3,5 điểm) Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC,B (O),C (O’). Đường thẳng BO cắt (O) tại điểm thứ hai là D. 1) Chứ`ng minh rằng tứ giác CO’OB là một hình thang vuông. 2) Chứng minh rằng ba điểm A, C, D thẳng hàng. 3) Từ D kẻ tiếp tuyến DE với đường tròn (O’) (E là tiếp điểm). Chứng minh rằng DB = DE. 3
  4. SỞ GD&ĐT KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013 VĨNH PHÚC ĐỀ THI MÔN : TOÁN Thời gian làm bài 120 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC Ngày thi: 21 tháng 6 năm 2012 x 3 6x 4 Câu 1 (2,0 điểm). Cho biểu thức :P= x 1 x 1 x2 1 1. Tìm điều kiện xác định của biểu thức P. 2. Rút gọn P 2x ay 4 Câu 2 (2,0 điểm). Cho hệ phương trình : ax 3y 5 1. Giải hệ phương trình với a=1 2. Tìm a để hệ phương trình có nghiệm duy nhất. Câu 3 (2,0 điểm). Một hình chữ nhật có chiều rộng bằng một nửa chiều dài. Biết rằng nếu giảm mỗi chiều đi 2m thì diện tích hình chữ nhật đã cho giảm đi một nửa. Tính chiều dài hình chữ nhật đã cho. Câu 4 (3,0 điểm). Cho đường tròn (O;R) (điểm O cố định, giá trị R không đổi) và điểm M nằm bên ngoài (O). Kẻ hai tiếp tuyến MB, MC (B,C là các tiếp điểm ) của (O) và tia Mx nằm giữa hai tia MO và MC. Qua B kẻ đường thẳng song song với Mx, đường thẳng này cắt (O) tại điểm thứ hai là A. Vẽ đường kính BB’ của (O). Qua O kẻ đường thẳng vuông góc với BB’,đường thẳng này cắt MC và B’C lần lượt tại K và E. Chứng minh rằng: 1. 4 điểm M,B,O,C cùng nằm trên một đường tròn. 2. Đoạn thẳng ME = R. 3. Khi điểm M di động mà OM = 2R thì điểm K di động trên một đường tròn cố định, chỉ rõ tâm và bán kính của đường tròn đó. Câu 5 (1,0 điểm). Cho a,b,c là các số dương thỏa mãn a+ b + c =4. Chứng minh rằng : 4 a3 4 b3 4 c3 2 2 4
  5. SỞ GD VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT NĂM HỌC 2012-2013 ĐĂKLĂK MÔN THI : TOÁN Thời gian làm bài: 120 phút,(không kể giao đề) ĐỀ CHÍNH THỨC Ngày thi: 22/06/2012 Câu 1. (2,5đ) 1) Giải phương trình: a) 2x2 – 7x + 3 = 0. b) 9x4 + 5x2 – 4 = 0. 2) Tìm hàm số y = ax + b, biết đồ thị hàm số của nó đi qua 2 điểm A(2;5) ; B(-2;-3). Câu 2. (1,5đ) 1) Hai ô tô đi từ A đến B dài 200km. Biết vận tốc xe thứ nhất nhanh hơn vận tốc xe thứ hai là 10km/h nên xe thứ nhất đến B sớm hơn xe thứ hai 1 giờ. Tính vận tốc mỗi xe. 1 2) Rút gọn biểu thức: A= 1 x x ; với x ≥ 0. x 1 Câu 3. (1,5 đ) Cho phương trình: x2 – 2(m+2)x + m2 + 4m +3 = 0. 1) Chứng minh rằng : Phương trình trên luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m. 2 2 2) Tìm giá trị của m để biểu thức A = x1 x2 đạt giá trị nhỏ nhất. Câu 4. (3,5đ) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC). Hai tiếp tuyến tại B và C cắt nhau tại M. AM cắt đường tròn (O) tại điểm thứ hai D. E là trung điểm đoạn AD. EC cắt đường tròn (O) tại điểm thứ hai F. Chứng minh rằng: 1) Tứ giác OEBM nội tiếp. 2) MB2 = MA.MD. 3)B· FC M· OC . 4) BF // AM Câu 5. (1đ) 1 2 Cho hai số dương x, y thõa mãn: x + 2y = 3. Chứng minh rằng: 3 x y 5
  6. SỞ GIÁO DỤC VÀO ĐÀO KỲ THI TUYỂN SINH LỚP 10 THPT TẠO HẢI DƯƠNG NĂM HỌC 2012-2013 MÔN THI: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài 120 phút (không kể thời gian giao đề) Ngày thi: Ngày 12 tháng 7 năm 2012 (Đề thi gồm: 01 trang) Câu 1 (2,0 điểm): Giải các phương trình sau: a) x(x-2)=12-x. x2 8 1 1 b) x2 16 x 4 x 4 Câu 2 (2,0 điểm): 3x y 2m 9 a) Cho hệ phương trình có nghiệm (x;y). Tìm m để biểu thức (xy+x-1) đạt giá trị x y 5 lớn nhất. 2 b) Tìm m để đường thẳng y = (2m-3)x-3 cắt trục hoành tại điểm có hoành độ bằng . 3 Câu 3 (2,0 điểm): 3 1 a) Rút gọn biểu thức P . x 2 với x 0 và x 4 . x x 2 x 1 b) Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được 600 tấn thóc. Năm nay, đơn vị thứ nhất làm vượt mức 10%, đơn vị thứ hai làm vượt mức 20% so với năm ngoái. Do đó cả hai đơn vị thu hoạch được 685 tấn thóc. Hỏi năm ngoái, mỗi đơn vị thu hoạch được bao nhiêu tấn thóc? Câu 4 (3,0 điểm): Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Vẽ các đường cao BE, CF của tam giác ấy. Gọi H là giao điểm của BE và CF. Kẻ đường kính BK của (O) . a) Chứng minh tứ giác BCEF là tứ giác nội tiếp. b) Chứng minh tứ giâc AHCK là mình bình hành. c) Đường tròn đường kính AC cắt BE ở M, đường tròn đường kính AB cặt CF ở N. Chứng minh AM = AN. Câu 5 (1,0 điểm): ac Cho a, b, c, d là các số thực thỏa mãn: b + d 0 và 2 . Chứng minh rằng phương trình b d (x2 + ax +b)(x2 + cx + d)=0 (x là ẩn) luôn có nghiệm. Hết 6
  7. KỲ THI TUYỂN SINH LỚP 10 THPT SỞ GIÁO DỤC VÀO ĐÀO NĂM HỌC 2012-2013 TẠO HẢI DƯƠNG MÔN THI: TOÁN Ngày thi: Ngày 14 tháng 7 năm 2012 (Đề thi gồm: 01 trang) Thời gian làm bài 120 phút (không kể thời gian giao đề) Câu 1 (2,0 điểm): Giải các phương trình sau: 2 4 a) x 5 x 3 0 3 5 b) | 2x – 3 | = 1. Câu 2 (2,0 điểm): Cho biểu thức: a a a a A = : với a và b là các số dương khác nhau. a b b a a b a b 2 ab a b 2 ab a) Rút gọn biểu thức A – . b a b) Tính giá trị của A khi a = 7 4 3 và b = 7 4 3 . Câu 3 (2,0 điểm): a) Tìm m để các đường thẳng y = 2x + m và y = x – 2m + 3 cắt nhau tại một điểm nằm trên trục tung. b) Cho quãng đường từ địa điểm A tới địa điểm B dài 90 km. Lúc 6 giờ một xe máy đi từ A để tới B Lúc 6 giờ 30 phút cùng ngày, một ô tô cũng đi từ A để tới B với vận tốc lớn hơn vận tốc xe máy 15 km/h (Hai xe chạy trên cùng một con đường đã cho). Hai xe nói trên đều đến B cùng lúc. Tính vận tốc mỗi xe. Câu 4 (3,0 điểm): Cho nửa đường tròn tâm O đường kính AB = 2R (R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung »AD và C· OD = 120 0 . Gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là F. a) Chứng minh rằng bốn điêm C, D, E, F cùng nằm trên một đường tròn. b) Tính bán kính của đường tròn đi qua C, E, D, F nói trên theo R. c) Tìm giá trị lớn nhất của điện tích tam giác FAB theo R khi C, D thay đổi nhung vẫn thỏa mãn giả thiết bài toán Câu 5 (1,0 điểm): Không dùng máy tính cầm tay , tìm số nguyên lớn nhất không vượt quá S, trong đó 6 S = 2 3 Hết 7
  8. SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT CHUYÊN HẢI DƯƠNG NGUYỄN TRÃI NĂM HỌC 2012- 2013 Môn thi: TOÁN (không chuyên) ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Ngày thi 19 tháng 6 năm 2012 Đề thi gồm : 01 trang Câu I (2,0 điểm) x 1 1) Giải phương trình x 1 . 3 x 3 3 3 0 2) Giải hệ phương trình . 3x 2y 11 Câu II ( 1,0 điểm) 1 1 a + 1 Rút gọn biểu thức P = + : với a > 0 và a 4 . 2 a - a 2 - a a - 2 a Câu III (1,0 điểm) Một tam giác vuông có chu vi là 30 cm, độ dài hai cạnh góc vuông hơn kém nhau 7cm. Tính độ dài các cạnh của tam giác vuông đó. Câu IV (2,0 điểm) 1 Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):y = 2x -m +1 và parabol (P): y = x2 . 2 1) Tìm m để đường thẳng (d) đi qua điểm A(-1; 3). 2) Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho x1x2 y1 + y2 48 0 . Câu V (3,0 điểm) Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D, AD cắt (O) tại E (E A) . 1) Chứng minh BE2 = AE.DE. 2) Qua C kẻ đường thẳng song song với BD cắt AB tại H, DO cắt BC tại F. Chứng minh tứ giác CHOF nội tiếp . 3) Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH. Câu VI ( 1,0 điểm) 1 1 Cho 2 số dương a, b thỏa mãn 2 . Tìm giá trị lớn nhất của biểu thức a b 1 1 Q . a4 b2 2ab2 b4 a2 2ba2 8
  9. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT TUYÊN QUANG Năm học 2011 - 2012 ĐỀ CHÍNH THỨC MÔN THI: TOÁN Thời gian: 120 phút (không kể thời gian giao đề) Câu 1 (3,0 điểm) 2 a) Giải phương trình: x 6 x 9 0 4x 3y 6 b) Giải hệ phương trình: 3y 4x 10 2 c) Giải phương trình: x 6x 9 x 2011 Câu 2 (2,5 điểm) Một ca nô chạy xuôi dòng từ A đến B rồi chạy ngược dòng từ B đến A hết tất cả 4 giờ. Tính vận tốc ca nô khi nước yên lặng, biết rằng quãng sông AB dài 30 km và vận tốc dòng nước là 4 km/giờ. Câu 3 (2,5 điểm) Trên đường tròn (O) lấy hai điểm M, N sao cho M, O, N không thẳng hàng. Hai tiếp tuyến tại M , N với đường tròn (O) cắt nhau tại A. Từ O kẻ đường vuông góc với OM cắt AN tại S. Từ A kẻ đường vuông góc với AM cắt ON tại I. Chứng minh: a) SO = SA b) Tam giác OIA cân Câu 4 (2,0 điểm). a) Tìm nghiệm nguyên của phương trình: x2 + 2y2 + 2xy + 3y – 4 = 0 b) Cho tam giác ABC vuông tại A. Gọi I là giao điểm các đường phân giác trong. Biết AB = 5 cm, IC = 6 cm. Tính BC. 9
  10. ĐỀ CHÍNH THỨC 10
  11. SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT THANH HÓA NĂM HỌC 2012-2013 Môn thi : Toán ĐỀ THI CHÍNH THỨC Thời gian : 120 phút không kể thời gian giao đề ĐỀ A Ngày thi 29 tháng 6 năm 2012 Bài 1: (2.0 điểm) 1- Giải các phương trình sau : a) x - 1 = 0 . b) x2 - 3x + 2 = 0 2x y 7 2- Giải hệ phương trình : x y 2 2 Bài 2: (2.0 điểm) Cho biẻu thức : A = 1 + 1 - a 1 2 2 a 2 2 a 1 a 2 1- Tìm điều kiện xác định và rút gọn biểu thức A 2- Tìm giá trị của a ; biết A 0 8a 2 b Tìm giá trị nhỏ nhất của biểu thức A = b 2 4a HẾT 12
  12. SỞ GIÁO DỤC ĐÀO TẠO KỲ THI VÀO LỚP 10 CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC 2012 - 2013 ĐỀ CHÍNH THỨC Môn thi : TOÁN (Đề gồm có 01 trang) (Môn chung cho tất cảc thí sinh) Thời gian làm bài :120 phút (Không kể thời gian giao đề) Ngày thi : 17 tháng 6 năm 2012 Câu 1: (2.0 điểm ) Cho biểu thức : a 1 a 1 1 P 4 a , (Với a > 0 , a 1) a 1 a 1 2a a 2 1. Chứng minh rằng : P a 1 2. Tìm giá trị của a để P = a Câu 2 (2,0 điểm ) : Trong mặt phẳng toạ độ Oxy, cho Parabol (P) : y = x2 và đường thẳng (d) : y = 2x + 3 1. Chứng minh rằng (d) và (P) có hai điểm chung phân biệt 2. Gọi A và B là các điểm chung của (d) và (P) . Tính diện tích tam giác OAB ( O là gốc toạ độ) Câu 3 (2.0 điểm) : Cho phương trình : x2 + 2mx + m2 – 2m + 4 = 0 1. Giải phơng trình khi m = 4 2. Tìm m để phương trình có hai nghiệm phân biệt Câu 4 (3.0 điểm) : Cho đường tròn (O) có đờng kính AB cố định, M là một điểm thuộc (O) ( M khác A và B ) . Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C. CD là đờng kính của (I). Chứng minh rằng: 1. Ba điểm O, M, D thẳng hàng 2. Tam giác COD là tam giác cân 3. Đờng thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đường tròn (O) Câu 5 (1.0 điểm) : Cho a,b,c là các số dương không âm thoả mãn : a2 b2 c2 3 a b c 1 Chứng minh rằng : a2 2b 3 b2 2c 3 c2 2a 3 2 13
  13. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT THÀNH PHỐ CẦN THƠ NĂM HỌC 2012-2013 Khóa ngày:21/6/2012 MÔN: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian phát đề) Câu 1: (2,0 điểm) Giải hệ phương trình , các phương trình sau đây: x y 43 1. 3x 2y 19 2. x 5 2x 18 3. x2 12x 36 0 4. x 2011 4x 8044 3 Câu 2: (1,5 điểm) 1 1 a 1 Cho biểu thức: (với ) K 2 : 2 a 0,a 1 a 1 a a a 1. Rút gọn biểu thức K. 2. Tìm a để K 2012 . Câu 3: (1,5 điểm) Cho phương trình (ẩn số x): x2 4x m2 3 0 * . 1. Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m. 2. Tìm giá trị của m để phương trình (*) có hai nghiệm x1, x2 thỏa x2 5x1 . Câu 4: (1,5 điểm) Một ô tô dự định đi từ A đến B cách nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô. Câu 5: (3,5 điểm) Cho đường tròn O , từ điểm ở Angoài đường tròn vẽ hai tiếp tuyến vàAB (AC B là, Ccác tiếp điểm). OAcắtBC tại E. 1. Chứng minh tứ giác ABOC nội tiếp. 2. Chứng minh BC vuông góc với OA và BA.BE AE.BO . 3. Gọi I là trung điểm của BE , đường thẳng quaI và vuông góc OIcắt các tia AB, AC theo thứ tự tại D và F . Chứng minh I·DO B· CO và DOF cân tại O . 4. Chứng minh F là trung điểm của.AC 14
  14. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT HÀ NAM NĂM HỌC 2012 – 2013 Môn: Toán ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Ngày thi : 22/06/2012 Câu 1 (1,5 điểm) Rút gọn các biểu thức sau: a) A 2 5 3 45 500 8 2 12 b) B 8 3 1 Câu 2: (2 điểm) a) Giải phương trình: x2 – 5x + 4 = 0 3x y 1 b) Giải hệ phương trình: x 2y 5 Câu 3: (2 điểm) Trong mặt phẳng toạ độ Oxy cho Parabol (P) có phương trình: y = x2 và đường thẳng (d) có phương trình: y = 2mx – 2m + 3 (m là tham số) a) Tìm toạ độ các điểm thuộc (P) biết tung độ của chúng bằng 2 b) Chứng minh rằng (P) và (d) cắt nhau tại hai điểm phân biệt với mọi m. Gọi y1, y2 là các tung độ giao điểm của (P) và (d), tìm m để y1 y2 9 Câu 4: (3,5 điểm) Cho đường tròn tâm O, đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm M ( M khác A). Từ M vẽ tiếp tuyến thứ hai MC với (O) (C là tiếp điểm). Kẻ CH vuông góc với AB (H AB ), MB cắt (O) tại điểm thứ hai là K và cắt CH tại N. Chứng minh rằng: a) Tứ giác AKNH là tứ giác nội tiếp. b) AM2 = MK.MB c) Góc KAC bằng góc OMB d) N là trung điểm của CH. Câu 5(1 điểm) Cho ba số thực a, b, c thoả mãn a 1;b 4;c 9 Tìm giá trị lớn nhất của biểu thức : bc a 1 ca b 4 ab c 9 P abc 15
  15. SỞ GIÁO DỤC VÀ ĐÀOTẠO KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013 QUẢNG TRỊ KHÓA NGÀY : 19/6/2012 MÔN : TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) Câu 1:(2 điểm) 1.Rút gọn các biểu thức (không dùng máy tính cầm tay): a) 250 - 18 1 1 1 b) P  , với a 0,a 1 a 1 a 1 a 1 2.Giải hệ phương trình (không dùng máy tính cầm tay): x y 4 2x y 5 Câu 2:(1,5 điểm) 2 Gọi x1, x2 là hai nghiệm của phương trình x 5x 3 0 .Không giải phương trình, tính giá trị các biểu thức sau: 1 2 2 a, x1 + x2 b, c, x1 x2 x1 x2 Câu 3:(1,5 điểm) Trên mặt phảng tọa độ, gọi (P) là đồ thị hàm số y x 2 a, Vẽ (P) b, Tìm tọa độ giao điểm của (P) và đường thẳng d: y = -2x+3 Câu 4:(1,5 điểm) Hai xe khởi hành cùng một lúc đi từ địa điểm A đến địa điểm B cách nhau 100km. Xe thứ nhất chạy nhanh hơn xe thứ hai 10km/h nên đã đến B sớm hơm 30 phút, Tính vận tốc mỗi xe. Câu 5:(3,5 điểm) Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K. a) Chứng minh tứ giác PDKI nội tiếp đường tròn. b) Chứng minh CI.CP = CK.CD c) Chứng minh IC là phân giác của góc ngoài ở đỉnh I của tam giác AIB. d) Cho ba điểm A, B, C cố định. Đường tròn (O) thay đổi nhưng vẫn đi qua A và B. Chứng minh rằng IQ luôn đi qua một điểm cố định. 16
  16. SỞ GIÁO DỤC ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NINH THUẬN NĂM HỌC 2012 – 2013 Khóa ngày: 24 – 6 – 2012 ĐỀ CHÍNH THỨC Môn thi: TOÁN Thời gian làm bài: 120 phút Bài 1: (2,0 điểm) 2x y 3 a) Giải hệ phương trình: x 3y 4 b) Xác định các giá trị của m để hệ phương trình sau vô nghiệm: (m 2)x (m 1)y 3 ( m là tham số) x 3y 4 Bài 2: (3,0 điểm) Cho hai hàm số y = x2 và y = x + 2. a) Vẽ đồ thị hai hàm số đã cho trên cùng một hệ trục tọa độ Oxy. b) Bằng phép tính hãy xác định tọa độ các giao điểm A, B của hai đồ thị trên (điểm A có hoành độ âm). c) Tính diện tích của tam giác OAB (O là gốc tọa độ) Bài 3: (1,0 điểm) Tính giá trị của biểu thức H = ( 10 2) 3 5 Bài 4: (3,0 điểm) Cho đường tròn tâm O, đường kính AC = 2R. Từ một điểm E ở trên đoạn OA (E không trùng với A và O). Kẻ dây BD vuông góc với AC. Kẻ đường kính DI của đường tròn (O). a) Chứng minh rằng: AB = CI. b) Chứng minh rằng: EA2 + EB2 + EC2 + ED2 = 4R2 2R c) Tính diện tích của đa giác ABICD theo R khi OE = 3 Bài 5: (1,0 điểm) Cho tam giác ABC và các trung tuyến AM, BN, CP. Chứng minh rằng: 3 (AB + BC + CA) < AM + BN + CP < AB + BC + CA 4 17
  17. ĐỀ CHÍNH THỨC 18
  18. SỞ GIÁO DỤC VÀ ĐÀOTẠO KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013 Khóa ngày : 24/6/2012 THỪA THIÊN HUẾ Môn thi : TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) Bài 1:(2,0 điểm) 5 3 5 3 3 a).Cho biểu thức: C = 5 3 . Chứng tỏ C = 3 5 3 1 b) Giải phương trình : 3 x 2 x2 4 = 0 Bài 2:(2,0 điểm) Cho hàm số y = x2 có đồ thị (P) và đường thẳng (d) đi qua điểm M (1;2) có hệ số góc k 0. a/ Chứng minh rằng với mọi giá trị k 0. đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B. b/ Gọi xA và xB là hoành độ của hai điểm A và B.Chứng minh rằng xA + xB xA .xB 2 = 0 Bài 3:(2,0 điểm) a/ Một xe lửa đi từ ga A đến ga B.Sau đó 1 giờ 40 phút, một xe lửa khác đi từ ga A đến ga B với vận tốc lớn hơn vận tốc của xe lửa thứ nhất là 5 km/h.Hai xe lửa gặp nhau tại một ga cách ga B 300 km.Tìm vận tốc của mỗi xe, biết rằng quãng đường sắt từ ga A đến ga B dài 645 km. 2 x y 5 x y b/ Giải hệ phương trình : 20 20 7 x y x y Bài 4:(3,0 điểm) Cho nửa đường tròn (O) đường kính BC.Lấy điểm A trên tia đối của tia CB.Kẻ tiếp tuyến AF với nửa đường tròn (O) ( F là tiếp điểm), tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D ( tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)) .Gọi H là giao điểm của BF với DO ; K là giao điểm thứ hai của DC với nửa đường tròn (O). a/ Chứng minh rằng : AO.AB=AF.AD. b/ Chứng minh tứ giác KHOC nội tiếp. BD DM c/ Kẻ OM BC ( M thuộc đoạn thẳng AD).Chứng minh = 1 O A DM AM Bài 5:(1,0 điểm) 0 Cho hình chử nhật OABC, C· OB = 300 .Gọi CH là đường cao của tam giác 30 COB, CH=20 cm.Khi hình chữ nhật OABC quay một vòng quanh cạnh OC cố định ta được một hình trụ, khi đó tam giác OHC tạo thành hình (H).Tính thể tích của phần hình trụ nằm bên ngoài hình (H). (Cho 3,1416 ) K H 12 cm B C 19
  19. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH PHÚ THỌ VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG ĐỀ CHÍNH THỨC NĂM HỌC 2012-2013 Môn toán Thời gian làm bài: 120 phút, không kể thời gian giao đề Đề thi có 01 trang Câu 1 (2đ) a) Giải phương trình 2x – 5 =1 b) Giải bất phương trình 3x – 1 > 5 Câu 2 (2đ) 3x y 3 a) Giải hệ phương trình 2x y 7 1 1 6 b) Chứng minh rằng 3 2 3 2 7 Câu 3 (2đ) Cho phương trình x2 – 2(m – 3)x – 1 = 0 a) Giải phương trình khi m = 1 b) Tìm m để phương trình có nghiệm x1 ; x2 mà biểu thức 2 2 A = x1 – x1x2 + x2 đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó. Câu 4 (3đ) Cho tam giác ABC vuông tại A. Lấy B làm tâm vẽ đường tròn tâm B bán kính AB.Lấy C làm tâm vẽ đường tròn tâm C bán kính AC, hai đường tròn này cắt nhau tại điểm thứ 2 là D.Vẽ AM, AN lần lượt là các dây cung của đường tròn (B) và (C) sao cho AM vuông góc với AN và D nằm giữa M; N. a) CMR: ABC= DBC b) CMR: ABDC là tứ giác nội tiếp. c) CMR: ba điểm M, D, N thẳng hàng d) Xác định vị trí của các dây AM; AN của đường tròn (B) và (C) sao cho đoạn MN có độ dài lớn nhất. 2 2 x 5y 8y 3 Câu 5 (1đ) Giải Hệ PT (2x 4y 1) 2x y 1 (4x 2y 3) x 2y Hết 20
  20. Së gi¸o dôc vµ ®µo t¹o kú thi tuyÓn sinh vµo líp 10 thpt chuyªn H­ng yªn N¨m häc 2012 - 2013 ĐỀ CHÍNH THỨC M«n thi: To¸n (Dµnh cho thÝ sinh dù thi c¸c líp chuyªn: To¸n, Tin) (§Ò thi cã 01 trang) Thêi gian lµm bµi: 150 phót Bài 1: (2 điểm) a) Cho A = 20122 20122.20132 20132 . Chứng minh A là một số tự nhiên. 1 x x2 3 2 y y b) Giải hệ phương trình 1 x x 3 y y Bài 2: (2 điểm) a) Cho Parbol (P): y = x2 và đường thẳng (d): y = (m +2)x – m + 6. Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ dương. b) Giải phương trình: 5 + x + 2 (4 x)(2x 2) 4( 4 x 2x 2) Bài 3: (2 điểm) a) Tìm tất cả các số hữu tỷ x sao cho A = x2 + x+ 6 là một số chính phương. (x3 y3 ) (x2 y2 ) b) Cho x > 1 và y > 1. Chứng minh rằng : 8 (x 1)(y 1) Bài 4 (3 điểm) Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, đường cao BE và CF. Tiếp tuyến tại B và C cắt nhau tại S, gọi BC và OS cắt nhau tại M a) Chứng minh AB. MB = AE.BS b) Hai tam giác AEM và ABS đồng dạng c) Gọi AM cắt EF tại N, AS cắt BC tại P. CMR NP vuông góc với BC Bài 5: (1 điểm) Trong một giải bóng đá có 12 đội tham dự, thi đấu vòng tròn một lượt (hai đội bất kỳ thi đấu với nhau đúng một trận). a) Chứng minh rằng sau 4 vòng đấu (mỗi đội thi đấu đúng 4 trận) luôn tìm được ba đội bóng đôi một chưa thi đấu với nhau. b) Khẳng định trên còn đúng không nếu các đội đã thi đấu 5 trận? 21
  21. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT HƯNG YÊN NĂM HỌC 2012 - 2013 ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) PHẦN A: TRẮC NGHIỆM KHÁCH QUAN (2 điểm) Từ câu 1 đến câu 8, hãy chọn phương án đúng và viết chữ cái đứng trước phương án đó vào bài làm Câu 1: giá trị của biểu thức 2 8 bằng: A. 10 B. 3 2 C. 6 D. 2 4 Câu 2: Biểu thức x 1 x 2 có nghĩa khi: A. x < 2 B. x 2 C. x 1 D. x 1 Câu 3: đường thẳng y = (2m – 1)x + 3 song song với đường thẳng y = 3x – 2 khi: A. m = 2 B. m = - 2 C. m 2 D. m 2 2x y 3 Câu 4: Hệ phương trình có nghiệm (x;y) là: x y 3 A. (-2;5) B. (0;-3) C. (1;2) D. (2;1) Câu 5: Phương trình x2 – 6x – 5 = 0 có tổng hai nghiệm là S và tích hai nghiệm là P thì: A. S = 6; P = -5 B. S = -6; P = 5 C. S = -5; P = 6 D. S = 6; P = 5 Câu 6: Đồ thị hàm số y = -x2 đi qua điểm: A. (1;1) B. (-2;4) C. (2;-4) D. (2 ;-1) Câu 7: Tam giác ABC vuông tại A có AB = 4cm; AC = 3cm thì độ dài đường cao AH là: 3 12 5 4 A. cm B. cm C. cm D. cm 4 5 12 3 Câu 8: Hình trụ có bán kính đáy và chiều cao cùng bằng R thì thể tích là A. 2 R3 B. R2 C. R3 D. 2 R2 PHẦN B: TỰ LUẬN ( 8,0 điểm) Bài 1: (1 điểm) a) Tìm x biết 3x 2 2 x 2 2 b) Rút gọn biểu thức: A 1 3 3 22
  22. Bài 2: (1,5 điểm) Cho đường thẳng (d): y = 2x + m – 1 a) Khi m = 3, tìm a để điểm A(a; -4) thuộc đường thẳng (d). b) Tìm m để đường thẳng (d) cắt các trục tọa độ Ox, Oy lần lượt tại M và N sao cho tam giác OMN có diện tích bằng 1. Bài 3: (1,5 điểm) Cho phương trình x2 – 2(m + 1)x + 4m = 0 (1) a) Giải phương trình (1) với m = 2. 2 b) Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn (x1 + m)(x2 + m) = 3m + 12 Bài 4: (3 điểm) Từ điểm A ở bên ngoài đường tròn (O), kẻ các tiếp tuyến Am, AN với đường tròn (M, N là các tiếp điểm). Đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm phân biệt B,C (O không thuộc (d), B nằm giữa A và C). Gọi H là trung điểm của BC. a) Chứng minh các điểm O, H, M, A, N cùng nằm trên một đường tròn, b) Chứng minh HA là tia phân giác của M· HN . c) Lấy điểm E trân MN sao cho BE song song với AM. Chứng minh HE//CM. Bài 5 (1,0 điểm) Cho các số thực dương x, y , z thỏa mãn x + y + z = 4. 1 1 Chứng minh rằng 1 xy xz 23
  23. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 ĐỒNG NAI Khóa ngày : 29 , 30 / 6 / 2012 Môn thi : TOÁN HỌC ĐỀ CHÍNH THỨC Thời gian làm bài : 120 phút ( Đề này có 1 trang , 5 câu ) Câu 1 : ( 1,5 điểm ) 1 / Giải phương trình : 7x2 – 8x – 9 = 0 . 3x + 2y =1 2 / Giải hệ phương trình : 4x +5y = 6 Câu 2 : ( 2,0 điểm ) 12 +3 3 2 2 1 / Rút gọn các biểu thức : M ; N 3 2 1 2 2 / Cho x1 ; x2 là hai nghiệm của phương trình : x – x – 1 = 0 . 1 1 Tính : + . x1 x2 Câu 3 : ( 1,5 điểm ) Trong mặt phẳng với hệ trục tọa độ Oxy cho các hàm số : 2 y = 3x có đồ thị ( P ) ; y = 2x – 3 có đồ thị là ( d ) ; y = kx + n có đồ thị là ( d1 ) với k và n là những số thực . 1 / Vẽ đồ thị ( P ) . 2 / Tìm k và n biết ( d1 ) đi qua điểm T( 1 ; 2 ) và ( d1 ) // ( d ) . Câu 4 : ( 1,5 điểm ) Một thửa đất hình chữ nhật có chu vi bằng 198 m , diện tích bằng 2430 m2 . Tính chiều dài và chiều rộng của thửa đất hình chữ nhật đã cho . Câu 5 : ( 3,5 điểm ) Cho hình vuông ABCD . Lấy điểm E thuộc cạnh BC , với E không trùng B và E không trùng C . Vẽ EF vuông góc với AE , với F thuộc CD . Đường thẳng AF cắt đường thẳng BC tại G . Vẽ đường thẳng a đi qua điểm A và vuông góc với AE , đường thẳng a cắt đường thẳng DE tại điểm H . AE CD 1 / Chứng minh . AF DE 2 / Chứng minh rằng tứ giác AEGH là tứ giác nội tiếp được đường tròn . 3 / Gọi b là tiếp tuyến của đường tròn ngoại tiếp tam giác AHE tại E , biết b cắt đường trung trực của đoạn thẳng EG tại điểm K . Chứng minh rằng KG là tiếp tuyến của đường tròn ngoại tiếp tam giác AHE . 24
  24. THI TUYỂN SINH VÀO LỚP 10 CHUYÊN TỈNH ĐỒNG NAI NĂM HỌC 2012 - 2013 ĐỀ CHÍNH THỨC Môn thi: Toán chung Thời gian làm bài: 120 phút ( không kể thời gian giao đề) ( Đề thi này gồm một trang, có bốn câu) Câu 1: ( 2,5 điểm) . 1/ Giải các phương trình : a/ x4 x2 20 0 b/ x 1 x 1 x y 3 1 2/ Giải hệ phương trình : y x 3 Câu 2 : ( 2,0 điểm) . Cho parabol y = x2 (P) và đường thẳng y = mx (d), với m là tham số. 1/ Tìm các giá trị của m để (P) và (d) cắt nhau tại điểm có tung độ bằng 9. 2/ Tìm các giá trị của m để (P) và (d) cắt nhau tại 2 điểm, mà khoảng cách giữa hai điểm này bằng 6 Câu 3 : ( 2,0 điểm) 1 1 3 1 1/ Tính : P ( ). 2 3 2 3 3 3 2/ Chứng minh : a5 b5 a3b2 a2b3 , biết rằng a b 0 . Câu 4 : (3,5 điểm) Cho tam giác ABC vuông ở A, đường cao AH. Vẽ đường tròn tâm O, đường kính AH, đường tròn này cắt các cạnh AB, AC theo thứ tự tại D và E . 1/ Chứng minh tứ giác BDEC là tứ giác nội tiếp được đường tròn. 2/ Chứng minh 3 điểm D, O, E thẳng hàng. 3/ Cho biết AB = 3 cm, BC = 5 cm. Tính diện tích tứ giác BDEC. HẾT 25
  25. THI TUYỂN SINH VÀO LỚP 10 CHUYÊN TỈNH ĐỒNG NAI NĂM HỌC 2012 - 2013 ĐỀ CHÍNH THỨC Môn thi: Toán ( môn chuyên) Thời gian làm bài: 150 phút ( không kể thời gian giao đề) ( Đề thi này gồm một trang, có năm câu) Câu 1. (1,5 điểm) Cho phương trình x4 16x2 32 0 ( với x R ) Chứng minh rằng x 6 3 2 3 2 2 3 là một nghiệm của phương trình đã cho. Câu 2. (2,5 điểm) 2x(x 1)(y 1) xy 6 Giải hệ phương trình ( với x R, y R ). 2y(y 1)(x 1) yx 6 Câu 3.(1,5 điểm) Cho tam giác đều MNP có cạnh bằng 2 cm. Lấy n điểm thuộc các cạnh hoặc ở phía trong tam giác đều MNP sao cho khoảng cách giửa hai điểm tuỳ ý lớn hơn 1 cm ( với n là số nguyên dương). Tìm n lớn nhất thoả mãn điều kiện đã cho. Câu 4. (1 điểm) Chứng minh rằng trong 10 số nguyên dương liên tiếp không tồn tại hai số có ước chung lớn hơn 9. Câu 5. (3,5 điểm) Cho tam giác ABC không là tam giác cân, biết tam giác ABC ngoại tiếp đường tròn (I). Gọi D,E,F lần lượt là các tiếp điểm của BC, CA, AB với đường tròn (I). Gọi M là giao điểm của đường thẳng EF và đường thẳng BC, biết AD cắt đường tròn (I) tại điểm N (N không trùng với D), giọi K là giao điểm của AI và EF. 1) Chứng minh rằng các điểm I, D, N, K cùng thuộc một đường tròn. 2) Chứng minh MN là tiếp tuyến của đường tròn (I). HẾT 26
  26. ĐỀ CHÍNH THỨC 27
  27. SỞ GIÁO DỤC - ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT TỈNH NINH BÌNH NĂM HỌC 2012 – 2013 Môn thi: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) Đề thi gồm 05 câu trong 01 trang Câu 1: (2,0 điểm) 1. Cho biểu thức P = x + 5. Tính giá trị biểu thức P tại x = 1. 2. Hàm số bậc nhất y = 2x + 1 đồng biến hay nghịch biến trên R? Vì sao? 3. Giải phương trình x2 + 5x + 4 = 0 Câu 2: (2,5 điểm) 2x y 1 1. Giải hệ phương trình: 3x 2y 5 1 1 1 2 2. Cho biểu thức Q = : với x > 0 và x 1. x 1 x x x 1 x 1 a) Rút gọn Q. b) Tính giá trị của Q với x = 7 – 43 . Câu 3: (1,5 điểm) Khoảng cách giữa hai bến sông A và b là 30 km. Một ca nô đi xuôi dòng từ bến A đến bến B rồi lại ngược dòng từ bến B về bến A. Tổng thời gian ca nô đi xuôi dòng và ngược dòng là 4 giờ . Tìm vận tốc của ca nô khi nước yên lặng, biết vận tốc của dòng nước là 4 km/h. Câu 4: (3,0 điểm) 28
  28. Cho đường tròn tâm O bán kính R. Một đường thẳng d không đi qua O và cắt đường tròn tại hai điểm phân biệt A và B. Trên d lấy điểm M sao cho A nằm giữa M và B. Từ M kẻ hai tiếp tuyến MC và MD với đường tròn (C, D là các tiếp điểm). 1. Chứng minh rằng MCOD là tứ giác nội tiếp. 2. Gọi I là trung điểm của AB. Đường thẳng IO cắt tia MD tại K. Chứng minh rằng KD. KM = KO. KI 3. Một đường thẳng đi qua O và song song với CD cắt các tia MC và MD lần lượt tại E và F. Xác định vị trí của M trên d sao cho diện tích tam giác MEF đạt giá trị nhỏ nhất. Câu 5: (1,0 điểm) Cho a, b, c là các số thực dương. Chứng minh rằng: b c c a a b a b c 4 a b c b c c a a b Hết SỞ GIÁO DỤC - ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN TỈNH NINH BÌNH Môn thi: TOÁN ĐỀ CHÍNH THỨC Ngày thi: 26 / 6 / 2012 ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Câu 1 (2 điểm). Cho phương trình bậc hai ẩn x, tham số m: x2 + 2mx – 2m – 3 = 0 (1) a) Giải phương trình (1) với m = -1. 2 2 b) Xác định giá trị của m để phương trình (1) có hai nghiệm x1, x2 sao cho x1 x2 nhỏ nhất. Tìm nghiệm của phương trình (1) ứng với m vừa tìm được. Câu 2 (2,5 điểm). 6x 4 3x 1 3 3x 3 1. Cho biểu thức A= 3x 3 3 3x 8 3x 2 3x 4 1 3x a) Rút gọn biểu thức A. b) Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên. 2. Giải phương trình: x 1 x x 1 x 1 Câu 3 (1,5 điểm). Một người đi xe đạp từ A tới B, quãng đường AB dài 24 km. Khi đi từ B trở về A người đó tăng vận tốc thêm 4 km/h so với lúc đi, vì vậy thời gian về ít hơn thời gian đi là 30 phút. Tính vận tốc của xe đạp khi đi từ A tới B. Câu 4 (3 điểm). Cho ABC nhọn nội tiếp (O). Giả sử M là điểm thuộc đoạn thẳng AB (M A, B); N là điểm thuộc tia đối của tia CA sao cho khi MN cắt BC tại I thì I là trung điểm của MN. Đường tròn ngoại tiếp AMN cắt (O) tại điểm P khác A. 1. C MR các tứ giác BMIP và CNPI nội tiếp được. 2. Giả sử PB = PC. Chứng minh rằng ABC cân. 29
  29. x Câu 5 (1 điểm). Cho x;y R , thỏa mãn x2 + y2 = 1. Tìm GTLN của : P y 2 SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO 10 - THPT TỈNH LÀO CAI NĂM HỌC: 2012 – 2013 MÔN: TOÁN Thời gian: 120 phút (không kể thời gian giao đề) Câu I: (2,5 điểm) 2 3 1. Thực hiện phép tính: a) 3 2 10 36 64 b) 2 3 3 2 5 . 2a 2 4 1 1 2. Cho biểu thức: P = 1 a3 1 a 1 a a) Tìm điều kiện của a để P xác định b) Rút gọn biểu thức P. Câu II: (1,5 điểm) 1. Cho hai hàm số bậc nhất y = -x + 2 và y = (m+3)x + 4. Tìm các giá trị của m để đồ thị của hàm số đã cho là: a) Hai đường thẳng cắt nhau b) Hai đường thẳng song song. 2. Tìm các giá trị của a để đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2). Câu III: (1,5 điểm) 1. Giải phương trình x 2 – 7x – 8 = 0 2. Cho phương trình x 2 – 2x + m – 3 = 0 với m là tham số. Tìm các giá trị của m để phương trình có hai 3 3 nghiệm x1; x2 thỏa mãn điều kiện x1 x 2 x1x 2 6 Câu IV: (1,5 điểm) 30
  30. 3x 2y 1 1. Giải hệ phương trình . x 3y 2 2x y m 1 2. Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện x + y > 1. 3x y 4m 1 Câu V: (3,0 điểm) Cho nửa đường tròn tâm O đường kính AB = 2R và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh AMOC là tứ giác nội tiếp đường tròn. b) Chứng minh AMDE là tứ giác nội tiếp đường tròn. c) Chứng mình A· DE A· CO Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 CHUYÊN GIA LAI Năm học 2012 – 2013 ĐỀĐề CHÍNH chính THỨCthức Môn thi: Toán (không chuyên) Ngày thi: 26/6/2012 Thời gian làm bài: 120 phút Câu 1. (2,0 điểm) x 2 x 2 Cho biểu thức Q x x , với x 0, x 1 x 2 x 1 x 1 a. Rút gọn biểu thức Q b. Tìm các giá trị nguyên của x để Q nhận giá trị nguyên. Câu 2. (1,5 điểm) Cho phương trình x2 2(m 1)x m 2 0 , với x là ẩn số, m R a. Giải phương trình đã cho khi m – 2 b. Giả sử phương trình đã cho có hai nghiệm phân biệt x1 và x2 . Tìm hệ thức liên hệ giữa x1 và x2 mà không phụ thuộc vào m. Câu 3. (2,0 điểm) (m 1)x (m 1)y 4m Cho hệ phương trình , với m R x (m 2)y 2 a. Giải hệ đã cho khi m –3 b. Tìm điều kiện của m để phương trình có nghiệm duy nhất. Tìm nghiệm duy nhất đó. Câu 4. (2,0 điểm) 31
  31. Cho hàm số y x2 có đồ thị (P). Gọi d là đường thẳng đi qua điểm M(0;1) và có hệ số góc k. a. Viết phương trình của đường thẳng d b. Tìm điều kiện của k để đt d cắt đồ thị (P) tại hai điểm phân biệt. Câu 5. (2,5 điểm) Cho tam giác nhọn ABC (AB < AC < BC) nội tiếp trong đường tròn (O). Gọi H là giao điểm của hai đường cao BD và CE của tam giác ABC (D AC, E AB) a. Chứng minh tứ giác BCDE nội tiếp trong một đường tròn b. Gọi I là điểm đối xứng với A qua O và J là trung điểm của BC. Chứng minh rằng ba điểm H, J, I thẳng hàng 1 1 1 c. Gọi K, M lần lượt là giao điểm của AI với ED và BD. Chứng minh rằng DK2 DA2 DM2 SỞ GIÁO DỤC VÀ ĐÀO TẠOKỲ THI TUYỂN SINH LỚP 10 THPT QUẢNG NINH NĂM HỌC 2012 – 2013 ĐỀ CHÍNH THỨC MÔN: TOÁN(Dùng cho mọi thí sinh dự thi) Ngày thi: 28/6/2012 Thời gian làm bài: 120 phút (Không kể thời gian giao đề) (Đề thi này có 01 trang) Câu I. (2,0 điểm) 1) Rút gọn các biểu thức sau: 1 1 1 2 a) A = 2 18 b) B = với x 0, x 1 2 x 1 x 1 x 1 2x y 5 2. Giải hệ phương trình: x 2 y 4 Câu II. (2,0 điểm) Cho phương trình (ẩn x): x2– ax – 2 = 0 (*) 1. Giải phương trình (*) với a = 1. 2. Chứng minh rằng phương trình (*) có hai nghiệm phân biệt với mọi giá trị của a. 3. Gọi x1, x2 là hai nghiệm của phương trình (*). Tìm giá trị của a để biểu thức: 2 2 N= x1 (x1 2)(x2 2) x2 có giá trị nhỏ nhất. Câu III. (2,0 điểm)Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. 32
  32. Quãng đường sông AB dài 78 km. Một chiếc thuyền máy đi từ A về phía B. Sau đó 1 giờ, một chiếc ca nô đi từ B về phía A. Thuyền và ca nô gặp nhau tại C cách B 36 km. Tính thời gian của thuyền, thời gian của ca nô đã đi từ lúc khởi hành đến khi gặp nhau, biết vận tốc của ca nô lớn hơn vận tốc của thuyền là 4 km/h. Câu IV. (3,5 điểm) Cho tam giác ABC vuông tại A, trên cạnh AC lấy điểm D (D ≠ A, D ≠ C). Đường tròn (O) Đường kính DC cắt BC tại E (E ≠ C). 1. Chứng minh tứ giác ABED nội tiếp. 2. Đường thẳng BD cắt đường tròn (O) tại điểm thứ hai I. Chứng minh ED là tia phân giác của góc AEI. 3. Giả sử tg ABC 2 Tìm vị trí của D trên AC để EA là tiếp tuyến của đường tròn đường kính DC. CâuV. (0.5 điểm) Giải phương trình: 7 2 x x (2 x) 7 x SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT KHÁNH HÒA NĂM HỌC 2011 - 2012 Môn thi: TOÁN ĐỀ CHÍNH THỨC Ngày thi : 21/06/2011 Thời gian làm bài: 120 phút Bài 1( 2 điểm) 2 3 6 8 4 1) Đơn giản biểu thức: A 2 3 4 1 1 P a ( );(a 1) 2) Cho biểu thức: a a 1 a a 1 Rút gọn P và chứng tỏ P 0 Bài 2( 2 điểm) 2 1) Cho phương trình bậc hai x + 5x + 3 = 0 có hai nghiệm x1; x2. Hãy lập một phương trình bậc 2 2 hai có hai nghiệm (x1 + 1 ) và ( x2 + 1). 33
  33. 2 3 4 x y 2 2) Giải hệ phương trình 4 1 1 x y 2 Bài 3( 2 điểm) Quãng đường từ A đến B dài 50km.Một người dự định đi xe đạp từ A đến B với vận tốc không đổi.Khi đi được 2 giờ,người ấy dừng lại 30 phút để nghỉ.Muốn đến B đúng thời gian đã định,người đó phải tăng vận tốc thêm 2 km/h trên quãng đường còn lại.Tính vận tốc ban đầu của người đi xe đạp. Bài 4( 4 điểm) Cho tam giác ABC có ba góc nhọn và H là trực tâm.Vẽ hình bình hành BHCD.Đường thẳng đi qua D và song song BC cắt đường thẳng AH tại E. 1) Chứng minh A,B,C,D,E cùng thuộc một đường tròn 2) Chứng minh BAE DAC 3) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm của BC,đường thẳng AM cắt OH tại G.Chứng minh G là trọng tâm của tam giácABC. 4) Giả sử OD = a.Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a SỞ GIÁO DỤC-ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT NĂM 2012 BÌNH ĐỊNH Khóa ngày 29 tháng 6 năm 2012 ĐỀ CHÍNH THỨC Môn thi: TOÁN Ngày thi: 30/6/2012 Thời gian làm bài: 120 phút (không kể thời gian giao đề) Bài 1: (3, 0 điểm) Học sinh không sử dụng máy tính bỏ túi a) Giải phương trình: 2x – 5 = 0 y x 2 b) Giải hệ phương trình: 5x 3y 10 5 a 3 3 a 1 a 2 2 a 8 c) Rút gọn biểu thức A với a 0,a 4 a 2 a 2 a 4 d) Tính giá trị của biểu thức B 4 2 3 7 4 3 Bài 2: (2, 0 điểm) 34
  34. Cho parabol (P) và đường thẳng (d) có phương trình lần lượt là y mx2 và y m 2 x m 1 (m là tham số, m 0). a) Với m = –1 , tìm tọa độ giao điểm của (d) và (P). b) Chứng minh rằng với mọi m 0 đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Bài 3: (2, 0 điểm) Quãng đường từ Quy Nhơn đến Bồng Sơn dài 100 km. Cùng một lúc, một xe máy khởi hành từ Quy Nhơn đi Bồng Sơn và một xe ô tô khởi hành từ Bồng Sơn đi Quy Nhơn. Sau khi hai xe gặp nhau, xe máy đi 1 giờ 30 phút nữa mới đến Bồng Sơn. Biết vận tốc hai xe không thay đổi trên suốt quãng đường đi và vận tốc của xe máy kém vận tốc xe ô tô là 20 km/h. Tính vận tốc mỗi xe. Bài 4: (3, 0 điểm) Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ BM, H là giao điểm của AK và MN. a) Chứng minh tứ giác BCHK là tứ giác nội tiếp. b) Chứng minh AK.AH = R2 c) Trên KN lấy điểm I sao cho KI = KM, chứng minh NI = KB. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH LỚP 10 THPT BẮC GIANG NĂM HỌC 2012 – 2013 Môn thi : Toán ĐỀ CHÍNH THỨC Thời gian : 120 phút không kể thời gian giao đề Ngày thi 30 tháng 6 năm 2012 Câu 1. (2 điểm) 1 1.Tính - 2 2 - 1 2 .Xác định giá trị của a,biết đồ thị hàm số y = ax - 1 đi qua điểm M(1;5) Câu 2: (3 điểm) 1 2 a- 3 a + 2 1.Rút gọn biểu thức: A = ( - ).( + 1) với a>0,a¹ 4 a - 2 a- 2 a a - 2 ïì 2x- 5y = 9 2.Giải hệ pt: íï îï 3x + y = 5 3. Chứng minh rằng pt: x2 + mx + m- 1= 0 luôn có nghiệm với mọi giá trị của m. 35
  35. Giả sử x1,x2 là 2 nghiệm của pt đã cho,tìm giá trị nhỏ nhất của biểu thức 2 2 B = x 1 + x 2 - 4.(x1 + x2 ) Câu 3: (1,5 điểm) Một ôtô tải đi từ A đến B với vận tốc 40km/h. Sau 2 giờ 30 phút thì một ôtô taxi cũng xuất phát đi từ A đến B với vận tốc 60 km/h và đến B cùng lúc với xe ôtô tải.Tính độ dài quãng đường AB. Câu 4: (3 điểm) Cho đường tròn (O) và một điểm A sao cho OA=3R. Qua A kẻ 2 tiếp tuyến AP và AQ của đường tròn (O),với P và Q là 2 tiếp điểm.Lấy M thuộc đường tròn (O) sao cho PM song song với AQ.Gọi N là giao điểm thứ 2 của đường thẳng AM và đường tròn (O).Tia PN cắt đường thẳng AQ tại K. 1.Chứng minh APOQ là tứ giác nội tiếp. 2.Chứng minh KA2=KN.KP 3.Kẻ đường kính QS của đường tròn (O).Chứng minh tia NS là tia phân giác của gócP· NM . 4. Gọi G là giao điểm của 2 đường thẳng AO và PK .Tính độ dài đoạn thẳng AG theo bán kính R. Câu 5: (0,5điểm) Cho a,b,c là 3 số thực khác không và thoả mãn: ïì a 2 (b + c) + b 2 (c + a) + c 2 (a + b) + 2abc = 0 íï ï 2013 2013 2013 îï a + b + c = 1 1 1 1 Hãy tính giá trị của biểu thức Q = + + a2013 b2013 c2013 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH LỚP 10 THPT YÊN BÁI NĂM HỌC 2012 – 2013 Môn thi : TOÁN ĐỀ CHÍNH THỨC Thời gian : 120 phút (không kể thời gian giao đề) Khóa ngày 23 tháng 6 năm 2012 (Đề thi có 01 trang, gồm 05 câu) Câu 1: (2,0 điểm) 1. Cho hàm số y = x + 3 (1) a. Tính giá trị của y khi x = 1 b. Vẽ đồ thị của hàm số (1) 2. Giải phương trình: 4x 2 − 7x + 3 = 0 Câu 2: (2,0 điểm) Cho biểu thức M = + − 1. Tìm điều kiện của x để biểu thức M có nghĩa. Rút gọn biểu thức M. 2. Tìm các giá trị của x để M > 1 Câu 3: (2,0 điểm) 36
  36. Một đội thợ mỏ phải khai thác 260 tấn than trong một thời hạn nhất định. Trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày. Hỏi theo kế hoạch mỗi ngày đội thợ phải khai thác bao nhiêu tấn than? Câu 4: (3,0 điểm) Cho nửa đường tròn tâm O, đường kính AB = 12 cm. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn (O) vẽ các tia tiếp tuyến Ax, By. M là một điểm thuộc nửa đường tròn (O), M không trùng với A và B. AM cắt By tại D, BM cắt Ax tại C. E là trung điểm của đoạn thẳng BD. 1. Chứng minh: AC . BD = AB 2 . 2. Chứng minh: EM là tiếp tuyến của nửa đường tròn tâm O. 3. Kéo dài EM cắt Ax tại F. Xác định vị trí của điểm M trên nửa đường tròn tâm O sao cho diện tích tứ giác AFEB đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó. Câu 5: (1,0 điểm) Tính giá trị của biểu thức T = x 2 + y 2 + z 2 − 7 biết: x + y + z = 2 x−34 + 4 y−21 + 6 z−4 + 45 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚ 10 THPT LÂM ĐỒNG MÔN THI : TOÁN Khóa ngày : 26 tháng 6 năm 2012 ĐỀ CHÍNH THỨC Thời gian làm bài : 120 phút (Đề thi gồm 01 trang) Câu 1: (0,75đ) Tính : 18 2 2 32 2x 3y 1 Câu 2: (0,75đ) Giải hệ phương trình : 4x 3y 11 Câu 3: (0,75đ) Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9cm, Ch = 16cm. Tính độ dài các đoạn thẳng AH, BH, AC. Câu 4: (0,75đ) Cho hai đường thẳng (d) : y = (m-3)x + 16 (m 3) và (d’): y = x + m2. Tìm m để (d) và (d’) cắt nhau tại một điểm trên trục tung Câu 5: (0,75đ) Cho AB là dây cung của đường tròn tâm O bán kính 12cm. Biết AB = 12cm . Tính diện tích hình quạt tạo bởi hai bán kính OA, OB và cung nhỏ AB. 37
  37. Câu 6: (1đ) Cho hàm số y = ax2 (a 0) có đồ thị (P). a) Tìm a biết (P) đi qua điểm A(2;4) b) Tìm k để đường thẳng (d) : y = 2x + k luôn cắt (P) tại 2 điểm phân biệt. Câu 7: (0,75đ) Hình nón có thể thể tích là 320 cm3, bán kính đường tròn là 8cm. Tính diện tích toàn phần của hình nón . Câu 8: (1đ) Cho đường tròn (O) đường kính AB, M là trung điểm của OA. Qua M vẽ dây cung CD vuông góc với OA. a) Chứng minh tứ giác ACOD là hình thoi . b) Tia CO cắt BD tại I. Chứng minh tứ giác DIOM nội tiếp. Câu 9: (1đ) Hai đội công nhân cùng đào một con mương . Nếu họ cùng làm thì trong 8 giờ xong việc. Nếu họ làm riêng thì đội A hoàn thành công việc nhanh hơn đội B 12 giờ. Hỏi nếu làm riêng thì mỗi đội phải làm trong bao nhiêu giờ mới xong việc. Câu 10: (0,75đ) Rút gọn : 37 20 3 37 20 3 Câu 11: (1đ) Cho phương trình : x2 – 2(m-2)x - 3m2 +2 = 0 (x là ẩn, m là tham số ) Tìm m để phương trình có 2 nghiệm x1; x2 thỏa : x1(2-x2) +x2(2-x1) = -2 Câu 12: (0,75đ) Cho nữa đường tròn (O) đường kính AB, vẽ các tiếp tuyến Ax và By cùng phía với nữa đường tròn , M là điểm chính giữa cung AB, N là một điểm thuộc đoạn OA N O, N A . Đường thẳng vuông góc với MN tại M cắt Ax và By lần lượt tại C và D. Chứng minh : AC = BN SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 NĂM HỌC 2012-2013 QUẢNG NGÃI Môn thi: Toán (không chuyên) Thời gian làm bài: 120 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC Bài 1: (1,5 điểm) 1/ Thực hiện phép tính: 2 1 2 1 x y 1 2/ Giải hệ phương trình: 2x 3y 7 3/ Giải phương trình: 9x2 8x 1 0 Bài 2: (2,0 điểm) Cho parapol P : y x2 và đường thẳng d : y 2x m2 1 (m là tham số). 1/ Xác định tất cả các giá trị của m để d song song với đường thẳng d ' : y 2m2 x m2 m . 2/ Chứng minh rằng với mọi m, d luôn cắt P tại hai điểm phân biệt A và B. 38
  38. 2 2 3/ Ký hiệu xA ; xB là hoành độ của điểm A và điểm B. Tìm m sao cho xA xB 14 . Bài 3: (2,0 điểm) Hai xe ô tô cùng đi từ cảng Dung Quất đến khu du lịch Sa Huỳnh, xe thứ hai đến sớm hơn xe thứ nhất là 1 giờ. Lúc trở về xe thứ nhất tăng vận tốc thêm 5 km mỗi giờ, xe thứ hai vẫn giữ nguyên vận tốc nhưng dừng lại nghỉ ở một điểm trên đường hết 40 phút, sau đó về đến cảng Dung Quất cùng lúc với xe thứ nhất. Tìm vận tốc ban đầu của mỗi xe, biết chiều dài quãng đường từ cảng Dung Quất đến khu du lịch Sa Huỳnh là 120 km và khi đi hay về hai xe đều xuất phát cùng một lúc. Bài 4: (3,5 điểm) Cho đường tròn tâm O đường kính AB = 2R và C là một điểm nằm trên đường tròn sao cho CA > CB. Gọi I là trung điểm của OA. Vẽ đường thẳng d vuông góc với AB tại I, cắt tia BC tại M và cắt đoạn AC tại P; AM cắt đường tròn (O) tại điểm thứ hai K. 1/ Chứng minh tứ giác BCPI nội tiếp được trong một đường tròn. 2/ Chứng minh ba điểm B, P, K thẳng hàng. 3/ Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại Q. Tính diện tích của tứ giác QAIM theo R khi BC = R. Bài 5: (1,0 điểm) 2xy Cho x 0, y 0 thỏa mãn x2 y2 1 . Tìm giá trị nhỏ nhất của biểu thức A . 1 xy HẾT UBND tØnh b¾c ninh ®Ò thi tuyÓn sinh vµo líp 10 N¨m häc 2012 - 2013 120 phót (Kh«ng kÓ thêi gian giao ®Ò) Ngµy thi: 30 th¸ng 06 n¨m 2012 Bài 1 (2,0điểm) 1) Tìm giá trị của x để các biểu thức có nghĩa: 4 3x 2 ; 2x 1 2) Rút gọn biểu thức: (2 3) 2 3 A 2 3 Bài 2 (2,0 điểm) Cho phương trình: mx2 – (4m -2)x + 3m – 2 = 0 (1) ( m là tham số). 39
  39. 1) Giải phương trình (1) khi m = 2. 2) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi giá trị của m. 3) Tìm giá trị của m để phương trình (1) có các nghiệm là nghiệm nguyên. Bài 3 (2,0 điểm) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi 34m. Nếu tăng thêm chiều dài 3m và chiều rộng 2m thì diện tích tăng thêm 45m2. Hãy tính chiều dài, chiều rộng của mảnh vườn. Bài 4 (3,0 điểm) Cho đường tròn O. Từ A là một điểm nằm ngoài (O) kẻ các tiếp tuyến AM và AN với (O) ( M; N là các tiếp điểm ). 1) Chứng minh rằng tứ giác AMON nội tiếp đường tròn đường kính AO. 2) Đường thẳng qua A cắt đường tròn (O) tại B và C (B nằm giữa A và C ). Gọi I là trung điểm của BC. Chứng minh I cũng thuộc đường tròn đường kính AO. 3) Gọi K là giao điểm của MN và BC . Chứng minh rằng AK.AI = AB.AC. Bài 5 (1,0 điểm) Cho các số x,y thỏa mãn x 0; y 0 và x + y = 1. Tìm giả trị lớn nhất và nhỏ nhất của A = x2 + y2. Hết SỞ GD & ĐT HÀ TĨNH KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 – 2013 ĐỀ CHÍNH THỨC Môn thi: TOÁN (Đề thi có 1 trang) Ngày thi : 28/6/2012 Mã đề 01 Thời gian làm bài : 120 phút Câu 1 (2điểm) 5 a) Trục căn thức ở mẩu của biểu thức: . 6 1 2x y 7 b) Giải hệ phương trình: . x 2y 1 Câu 2 (2điểm) 40
  40. 4a a a 1 Cho biểu thức: P . với a >0 và a 1 . 2 a 1 a a a a) Rút gọn biểu thức P. b) Với những giá trị nào của a thì P = 3. Câu 3 (2điểm) a) Trong mặt phẳng tọa độ Oxy, đường thẳng y = ax + b đi qua điểm M(–1 ; 2) và song song với đường thẳng y = 2x + 1. Tìm a và b. 2 2 b) Gọi x1, x2 là hai nghiệm của phương trình x + 4x – m – 5m = 0. Tìm các giá trị của m sao cho: |x1 – x2| = 4. Câu 4 (3điểm) Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Hai đường cao AD, BE cắt nhau tại H (D BC, E AC) . a) Chứng minh tứ giác ABDE nội tiếp đường tròn. b) Tia AO cắt đường tròn (O) tại K ( K khác A). Chứng minh tứ giác BHCK là hình bình hành. c) Gọi F là giao điểm của tia CH với AB. Tìm giá trị nhỏ nhất của biểu thức: AD BE CF Q . HD HE HF Câu 5 (1điểm) Tìm tất cả các giá trị của tham số m để phương trình sau vô nghiệm: x2 – 4x – 2m|x – 2| – m + 6 = 0. SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP THPT BÌNH DƯƠNG Năm học 2012 – 2013 §Ò chÝnh thøc Môn thi: Toán Thời gian làm bài: 120 phút (Không kể thời gian phát đề) 2 3 Bài 1 (1 điểm): Cho biểu thức: A = 50 x 8x 5 4 1/ Rút gọn biểu thức A 2/ Tính giá trị của x khi A = 1 41
  41. Bài 2 (1,5 điểm): x2 1/ Vẽ đồ thị (P) hàm số y = 2 2/ Xác định m để đường thẳng (d): y = x – m cắt (P) tại điểm A có hoành độ bằng 1. Tìm tung độ của điểm A Bài 3 (2 điểm): 2x y 4 1/ Giải hệ phương trình: 3x y 3 2/ Giải phương trình: x4 + x2 – 6 = 0 Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m 2/ Tìm m để x1 x2 đạt giá trị nhỏ nhất (x1; x2 là hai nghiệm của phương trình) Bài 5 (3,5 điểm): Cho đường tròn (O) và điểm M ở ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB và cát tuyến MPQ (MP < MQ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ 2 giữa đường thẳng BI và đường tròn (O). Chứng minh: 1/ Tứ giác BOIM nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác đó 2/ BOM = BEA 3/ AE // PQ 4/ Ba điểm O; I; K thẳng hàng, với K là trung điểm của EA SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT THÁI BÌNH NĂM HỌC 2012 – 2013 §Ò chÝnh thøc Môn thi: TOÁN Thời gian làm bài: 120 phút, không kể thời gian giao đề Bài 1. (2,0 điểm) 1 1) Tính: A 9 4 5. 5 2 2(x 4) x 8 2) Cho biểu thức: B với x ≥ 0, x ≠ 16. x 3 x 4 x 1 x 4 a. Rút gọn B. b. Tìm x để giá trị của B là một số nguyên. 42
  42. Bài 2. (2,0 điểm) Cho phương trình: x2 – 4x + m + 1 = 0 (m là tham số). 1) Giải phương trình với m = 2. 2) Tìm m để phương trình có hai nghiệm trái dấu (x1 < 0 < x2). Khi đó nghiệm nào có giá trị tuyệt đối lớn hơn? Bài 3. (2,0 điểm): Trong mặt phẳng toạ độ Oxy cho parabol (P): y = -x2 và đường thẳng (d): y = mx + 2 (m là tham số). 1) Tìm m để (d) cắt (P) tại một điểm duy nhất. 2) Cho hai điểm A(-2; m) và B(1; n). Tìm m, n để A thuộc (P) và B thuộc (d). 3) Gọi H là chân đường vuông góc kẻ từ O đến (d). Tìm m để độ dài đoạn OH lớn nhất. Bài 4. (3,5 điểm) Cho đường tròn (O), dây cung BC (BC không là đường kính). Điểm A di động trên cung nhỏ BC (A khác B và C; độ dài đoạn AB khác AC). Kẻ đường kính AA’ của đường tròn (O), D là chân đường vuông góc kẻ từ A đến BC. Hai điểm E, F lần lượt là chân đường vuông góc kẻ từ B, C đến AA’. Chứng minh rằng: 1) Bốn điểm A, B, D, E cùng nằm trên một đường tròn. 2) BD.AC = AD.A’C. 3) DE vuông góc với AC. 4) Tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định. Bài 5.(0,5 điểm): Giải hệ phương trình: x4 x3 3x2 4y 1 0 x2 4y2 x2 2xy 4y2 . x 2y 2 3 SỞ GD & ĐT TRÀ VINH KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2011 – 2012 §Ò chÝnh thøc Môn thi: TOÁN Thời gian làm bài: 120 phút ( không kể thời gian giao đề). Bài 1: ( 1,5 điểm ) 1 1 Cho biểu thức A = 1 x 1 x 1 1) Rút gọn biểu thức A. 2) Tìm x để A = - 3 Bài 2: ( 1,0 điểm ) Giải hệ phương trình: x 2 y 3 13 x 3 y 2 5 6 43
  43. Bài 3: ( 2,5 điểm ) x2 x Cho hai hàm số y và y = 1 2 2 1).Vẽ đồ thị của hai hàm số này trên cùng một mặt phẳng tọa độ. b) Tìm tọa độ giao điểm của hai đồ thị đó. Bài 4: ( 2,0 điểm ) Cho phương trình: x2 – 2(m + 4 )x + m2 – 8 = 0 (1) , với m là tham số. 1) Tìm m để phương trình (1) có hai nghiệm phận biệt là x1 và x2 . 2) Tìm m để x1 + x2 – 3x1x2 có giá trị lớn nhất. Bài 5: ( 3,0 điểm ) Từ một điểm M ở ngoài đường tròn O bán kính R, vẽ hai tiếp tuyến MA, MB đến đường tròn O bán kính R ( Với A, B là hai tiếp điểm ). Qua A vẽ đường thẳng song song với MB cắt đường tròn tâm O tại E. Đoạn ME cắt đường tròn tâm O tại F. Hai đường thẳng AF và MB cắt nhau tại I. a) Chứng minh tứ giác MAOB nội tiếp đường tròn. b) Chứng minh IB2 = IF.IA. c) Chứng minh IM = IB. 44
  44. §Ò chÝnh thøc 45
  45. SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 TRƯỜNG CHUYÊN TỈNH KIÊN GIANG NĂM HỌC 2012-2013 ĐỀ CHÍNH THỨC Môn thi: TOÁN (Không chuyên) (Đề thi có 01 trang) Thời gian: 120 phút (Không kể thời gian giao đề) Ngày thi: 25/6/2012 Bài 1. (1,5 điểm) 1/ Rút gọn: A = (3 2 11)(3 2 11) ab + a - b a- 1 b a + 1 2/ Chứng minh rằng với a không âm, a khác 1, b tùy ý, ta có: a - 1 1 + a Bài 2. (1,5 điểm) 1 m Cho (dm): y x (1 m)(m 2) m 2 1 m 1/ Với giá trị nào của m thì đường thẳng (dm): y x (1 m)(m 2) vuông góc với đường thẳng m 2 1 (d): y x 3 4 (Cho biết hai đường thẳng vuông góc với nhau khi và chỉ khi tích hệ số góc bằng -1) 2/ Với giá trị nào của m thì (dm) là hàm số đồng biến. Bài 3. (3 điểm) 1/ Chứng minh rằng phương trình sau có 2 nghiệm phân biệt x1, x2 với mọi giá trị m: 2 2 2 x (m 1)x m 3 0. Xác định các giá trị của m thỏa mãn : x1x2 x2 x1 3 2/ Một phòng họp có 360 chỗ ngồi và được chia thành các dãy có số chỗ ngồi bằng nhau. Nếu thêm cho mỗi dãy 4 chỗ ngồi và bớt đi 3 dãy thì số chỗ ngồi trong phòng không thay đổi. Hỏi ban đầu số chỗ ngồi trong phòng họp được chia thành bao nhiêu dãy? Bài 4. (1 điểm) Cho tam giác ABC vuông tại A, đường cao AH. Tính chu vi tam giác ABC, biết rằng: CH = 20,3cm. Góc B bằng 620. (Chính xác đến 6 chữ số thập phân). Bài 5. (3 điểm) Cho đường tròn (O, 4cm), đường kính AB. Gọi H là trung điểm của OA, vẽ dây CD vuông góc với AB tại H. Lấy điểm E trên đoạn HD (E ≠ H và E ≠ D), nối AE cắt đường tròn tại F. a) Chứng minh rằng AD2 = AE . AF b) Tính độ dài cung nhỏ BF khi HE = 1 cm (chính xác đến 2 chữ số thập phân) c) Tìm vị trí điểm E trên đoạn HD để số đo góc EOF bằng 900 HẾT 46
  46. SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT TỈNH KIÊN GIANG NĂM HỌC 2012 – 2013 ĐỀ CHÍNH THỨC Môn thi: TOÁN (Đề thi có 01 trang) Thời gian: 120 phút (Không kể thời gian giao đề) Ngày thi: 06/7/2012 Bài 1. (1,5 điểm) 1) Rút gọn biểu thức A = 112 - 45 - 63 + 2 20 x x x x 1 1 2) Cho biểu thức B = , với 0 ≤ x ≠ 1 1 x 1 x a) Rút gọn B 1 b) Tính giá trị biểu thức B khi x = 1 2 Bài 2. (1,5 điểm) 2 Cho đường thẳng (dm) : y = - x + 1 – m và (D): y = x 1) Vẽ đường thẳng (dm) khi m = 2 và (D) trên cùng hệ trục tọa độ, nhận xét về 2 đồ thị của chúng. 2) Tìm m dể trục tọa độ Ox, (D) và (dm) đồng quy. Bài 3. (1,5 điểm) Trong đợt quyên góp ủng hộ người nghèo, lớp 9A và 9B có 79 học sinh quyên góp được 975000 đồng. Mỗi học sinh lớp 9A đóng góp 10000 đồng, mỗi học sinh lớp 9B đóng góp 15000 đồng. Tính số học sinh mỗi lớp. Bài 4. (1,5 điểm) Cho phương trình: x2 2(m 2)x m2 5m 4 0 (*) 1/ Chứng minh rằng với m < 0 phương trình (*) luôn luôn có 2 nghiệm phân biệt x1, x2 . 1 1 2/ Tìm m để phương trình (*) có hai nghiệm phân biệt x1, x2 thỏa hệ thức 1 x1 x 2 Bài 5. (4 điểm) Cho nửa đường tròn tâm O đường kính AB và điểm C trên đường tròn sao cho CA = CB. Gọi M là trung điểm của dây cung AC; Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D. a) Chứng minh: DE . DA = DC . DB b) Chứng minh: MOCD là hình bình hành MF c) Kẻ EF vuông góc với AC. Tính tỉ số ? EF d) Vẽ đường tròn tâm E bán kính EA cắt đường tròn (O) tại điểm thứ hai là N; EF cắt AN tại I, cắt đường tròn (O) tại điểm thứ hai là K; EB cắt AN tại H. Chứng minh: Tứ giác BHIK nội tiếp được đường tròn. HẾT 47
  47. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT QUẢNG BÌNH Môn thi: TOÁN M· ®Ò: 201 (thÝ sinh ghi m· ®Ò vµo sau ch÷ bµi lµm) ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút 1 1 m 1 C©u 1: (1.5 ®iÓm): Cho biÓu thøc::P 2 : 2 víi m 0 , m ±1 m m m 1 m 2m 1 a)Rót gän biÓu thøc P 1 b) TÝnh gi¸ trÞ cña biÓu thøc P khi x= 2 C©u 2:(1,5®iÓm) : Cho ba ®­êng th¼ng(d1): y= 2x+1; (d2): y=3; (d3): y=kx+5 . a) X¸c ®Þnh to¹ ®é giao ®iÓm cña hai ®­êng th¼ng d1 vµ d2. b) T×m k ®Ó ba ®­êng th¼ng trªn ®ång quy. C©u 3:(2.5 ®iÓm) Cho ph­¬ng tr×nh bËc hai Èn x: x2-2(m-1)x+2m-4=0 (m lµ tham sè) (1) a) Gi¶i ph­¬ng tr×nh (1) khi m = 3 b)Chøng minh r»ng ph­¬ng tr×nh (1) lu«n cã hai nghiÖm ph©n biÖt víi mäi m. c) Gäi x1,x2 lµ hai nghiÖm cña ph­¬ng tr×nh (1). T×m gi¸ trÞ nhá nhÊt cña biÓu thøc 2 2 A = x1 +x2 C©u 4: (3,5 ®iÓm): Cho ®­êng trßn t©m O, ®­êng kÝnh AB=2R. Gäi M lµ mét ®iÓm bÊt k× trªn n÷a ®­êng trßn( M kh«ng trïng víi A, B). VÏ c¸c tiÕp tuyÕn Ax, By, Mz cña n÷a ®­êng trßn. §­êng th¼ng Mz c¾t Ax, By lÇn l­ît t¹i N vµ P. §­êng th¼ng AM c¾t By t¹i C vµ ®­êng th¼ng BM c¾t Ax t¹i D. a) Chøng minh tø gi¸c AOMN néi tiÕp ®­îc trong mét ®­êng trßn. b) Chøng minh N lµ trung ®iÓm cña AD, P lµ trung ®iÓm cña BC c) Chøng minh AD.BC = 4R2 C©u 5: : (1,0®iÓm) Cho a, b, c lµ c¸c sè d­¬ng . Chøng minh r»ng : 25a 16b c 8 . b c a c a b SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TÂY NINH NĂM HỌC 2012 – 2013 Môn thi: TOÁN(Không chuyên) §Ò chÝnh thøc Ngày thi : 02 tháng 7 năm 2012 Thời gian làm bài: 120 phút (không kể thời gian giao đề) 48
  48. Câu 1 : (1điểm) Thực hiện các phép tính a) A 2. 8 b) B 3 5 20 Câu 2 : (1 điểm) Giải phương trình: x2 2x 8 0 . 2x y 5 Câu 3 : (1 điểm) Giải hệ phương trình: . 3x y 10 Câu 4 : (1 điểm) Tìm x để mỗi biểu thức sau có nghĩa: 1 a) b) 4 x2 x2 9 Câu 5 : (1 điểm) Vẽ đồ thị của hàm số y x2 Câu 6 : (1 điểm) Cho phương trình x2 2 m 1 x m2 3 0 . a) Tìm m để phương trình có nghiệm. b) Gọi x1 , x2 là hai nghiệm của phương trình đã cho, tìm giá trị nhỏ nhất của biểu thức A x1 x2 x1x2 . Câu 7 : (1 điểm) Tìm m để đồ thị hàm số y 3x m 1 cắt trục tung tại điểm có tung độ bằng 4. Câu 8 : (1 điểm) Cho tam giác ABC vuông tại A có đường cao là AH. Cho biết AB 3cm , AC 4cm . Hãy tìm độ dài đường cao AH. Câu 9 : (1 điểm) Cho tam giác ABC vuông tại A. Nửa đường tròn đường kính AB cắt BC tại D. Trên cung AD lấy một điểm E. Nối BE và kéo dài cắt AC tại F. Chứng minh tứ giác CDEF là một tứ giác nội tiếp. Câu 10: (1 điểm) Trên đường tròn (O) dựng một dây cung AB có chiều dài không đổi bé hơn đường kính. Xác định vị trí của điểm M trên cung lớn A»B sao cho chu vi tam giác AMB có giá trị lớn nhất. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CAO BẰNG NĂM HỌC 2012 - 2013 Môn thi: TOÁN ĐỀ CHÍNH THỨC Ngày thi : 22/06/2011 Thời gian làm bài: 120 phút 49
  49. Câu 1: (4,0 điểm) a) Tính: 36 ; 81 . b) Giải phương trình: x – 2 = 0. c) Giải phương trình: x2 – 4x + 4 = 0. Câu 2: (2,0 điểm) Một mảnh vườn hình chữ nhật có chu vi 400m. Biết chiều dài hơn chiều rộng 60m. Tính chiều dài và chiều rộng mảnh vườn đó. Câu 3: (1,0 điểm) Cho tam giác ABC vuông tại A, biết AB = 3cm, AC = 4cm. a) Tính cạnh BC. b) Kẻ đường cao AH, tính BH. Câu 4: (2,0 điểm) Cho đường tròn tâm O, bán kính R; P là một điểm ở ngoài đường tròn sao cho OP = 2R. Tia PO cắt đường tròn (O; R) ở A (A nằm giữa P và O), từ P kẻ hai tiếp tuyến PC và PD với (O; R) với C, D là hai tiếp điểm. a) Chứng minh tứ giác PCOD nội tiếp. b) Chứng minh tam giác PCD đều và tính độ dài các cạnh tam giác PCD. Câu 5: (1,0 điểm) x2 4x 1 Tìm giá trị nhỏ nhất của biểu thức: A = x2 SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT LẠNG SƠN NĂM HỌC 2012 – 2013 Môn thi: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) Ngày thi: 27 tháng 06 năm 2012 Đề thi gồm: 01 trang 50
  50. Câu I (2 điểm). 1.tính giá trị biểu thức: 2 12 27 A = 3 1 1 B = 3 1 1 x 1 2. Cho biểu thức P = 2 : x 1 x 1 1 x x 1 1 Tìm x để biểu thức P có nghĩa; Rút gọn P . Tìm x để P là một số nguyên Câu II (2 điểm). 1. Vẽ đồ thị hàm số : y = 2x2 2. Cho phương trình bậc hai tham số m : x2 -2 (m-1) x - 3 = 0 a. Giải phương trình khi m= 2 b. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x 1; x2 với mọi giá trị của m. x1 x2 Tìm m thỏa mãn 2 2 m 1 x2 x 1 Câu III (1,5 điểm). Trong tháng thanh niên Đoàn trường phát động và giao chỉ tiêu mỗi chi đoàn thu gom 10kg giấy vụn làm kế hoạch nhỏ. Để nâng cao tinh thần thi đua bí thư chi đoàn 10A chia các đoàn viên trong lớp thành hai tổ thi đua thu gom giấy vụn. Cả hai tổ đều rất tích cực. Tổ 1 thu gom vượt chỉ tiêu 30%, tổ hai gom vượt chỉ tiêu 20% nên tổng số giấy chi đoàn 10A thu được là 12,5 kg. Hỏi mỗi tổ được bí thư chi đoàn giao chỉ tiêu thu gom bao nhiêu kg giấy vụn? Câu IV (3,5 điểm). Cho đường tròn tâm O,đường kính AB, C là một điểm cố định trên đường tròn khác A và B. Lấy D là điểm nằm giữa cung nhỏ BC. Các tia AC và AD lần lượt cắt tiếp tuyến Bt của đường tròn ở E và F a, Chừng minh rằng hai tam giác ABD và BFD đồng dạng b, Chứng minh tứ giác CDFE nội tiếp c, Gọi D 1 đối xúng với D qua O và M là giao điểm của AD và CD 1 chứng minh rằng sooe đo góc AMC không đổi khi D chạy trên cung nhỏ BC Câu V (1 điểm). Chứng minh rằng Q = x4 3x3 4x2 3x 1 0 với mọi giá trị của x 1 3 1 3 = (1 x)2 (x2 x 1) = (1 x)2 (x2 x ) = (1 x)2 (x )2 0x 4 4 2 4 SỞ GD & ĐT HÒA BÌNH KỲ THI TUYỂN SINH VÀO LỚP 10 NĂM HỌC 2012- 2013 TRƯỜNG THPT CHUYÊN HOÀNG VĂN THỤ ĐỀ CHÍNH THỨC ĐỀ THI MÔN TOÁN (CHUNG) Ngày thi: 29 tháng 6 năm 2012 Thời gian làm bài: 120 phút (không kể thời gian giao đề) Đề thi gồm có 01 trang 51
  51. PHẦN I. TRẮC NGHIỆM(2 Điểm) (Thí sinh không cần giải thích và không phải chép lại đề bài, hãy viết kết quả các bài toán sau vào tờ giấy thi) 1. Biểu thức A = 2x 1 có nghĩa với các giá trị của x là 2. Giá trị m để 2 đường thẳng (d1): y = 3x – 2 và (d2): y = mx + 3m – 1 cắt nhau tại 1 điểm trên trục tung là 3. Các nghiệm của phương trình 3x 5 1 là 2 4. Giá trị của m để phương trình x – (m+1)x - 2 = 0 có 2 nghiệm x1, x2 thỏa mãn 2 2 x1 x2 + x1x2 = 4 là PHẦN II. TỰ LUẬN (8 điểm) Bài 1. (2 điểm) 1 1 5 x y a) Giải hệ phương trình 2 3 5 x y b) Cho tam giác ABC vuông tại A (AB > AC). Đường phân giác AD chia cạnh huyền BC thành 2 đoạn 3 theo tỷ lệ và BC = 20cm. Tính độ dài hai cạnh góc vuông. 4 Bài 2. (2 điểm) Tìm một số có hai chữ số, biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 5 và nếu đem số đó chia cho tổng các chữ số của nó thì được thương là 7 và dư là 6. Bài 3.(3 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Các đường cao AD, BE, CF của tám giác cắt nhau tại H. Chứng minh rằng: a) Tứ giác BCEF nội tiếp được. b) EF vuông góc với AO. c) Bán kính đường tròn ngoại tiếp tam giác BHC bằng R. Bài 4. (1 điểm) Trên các cạnh của một hình chữ nhật đặt lần lượt 4 điểm tùy ý. Bốn điểm này tạo thành một tứ giác có độ dài các cạnh lần lượt là x, y, z , t. Chứng minh rằng 25 x2 + y2 + z2 + t2 50. Biết rằng hình chữ nhật có chiều dài và chiều rộng là 4 và 3. SỞ GD & ĐT HÒA BÌNH ĐỀ THI TUYỂN SINH VÀO 10 NĂM HỌC 2012-2013 ĐỀ THI MÔN: TOÁN ĐỀ CHÍNH THỨC Ngày thi: 19/ 07/ 2012 Thời gian làm bài: 120 phút (không kể thời gian giao đề) Câu 1. (3,0 điểm) 52
  52. 1. Tìm điều kiện có nghĩa của biểu thức: 1 a) ; b) x 2 . x 1 2. Phân tích đa thức thành nhân tử : a) x2 5x ; b) x2 7xy 10y2 3. Cho tam giác ABC vuông tại A; AB = 2 cm, AC = 4 cm. Tính độ dài cạnh BC. Câu 2. (3,0 điểm) 1. Giải phương trình: 2(x + 5) + (x – 3)(x + 3) = 0. 2. a) Vẽ đồ thị hàm số y = 3x + 2 (1). b) Gọi A, B là giao điểm của đồ thị hàm số (1) với trục tung và trục hoành. Tính diện tích tam giác OAB. Câu 3. (1,0 điểm) Một phòng họp có 320 ghế ngồi được xếp thành từng dãy và số ghế mỗi dãy đều bằng nhau. Nếu số dãy ghế tăng tăng thêm 1 và số ghế mỗi dãy tăng thêm 2 thì trong phòng có 374 ghế. Hỏi trong phòng có bao nhiêu dãy ghế và mỗi dãy có bao nhiêu ghế? Câu 4. (2,0 điểm) Cho đường tròn tâm O, bán kính R và điểm M sao cho MO = 2R. Qua điểm M kẻ các tiếp tuyến MA, MB với đường tròn (O). Hai đường cao BD và AC của tam giác MAB cắt nhau tại H 1) Chứng minh tứ giác AHBO là hình thoi. 2) Tính góc A· MB . Câu 5. (1,0 điểm) Cho hai số thực x, y thỏa mãn: x2 y2 x y . Chứng minh rằng: x y 2 –––––––––––– Hết –––––––––––– SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN QUẢNG NAM Năm học: 2012 – 2013 Khóa thi: Ngày 4 tháng 7 năm 2012 ĐỀ CHÍNH THỨC Môn: TOÁN (Toán chung) Thời gian làm bài: 120 phút ( không kể thời gian giao đề) 53
  53. Câu 1: (2,0 điểm) x 2 3x 3 Cho biểu thức: A 4x 12 . x 3 a) Tìm điều kiện của x để biểu thức A có nghĩa. b) Rút gọn biểu thức A. c) Tính giá trị của A khi x 4 2 3 . Câu 2: (2,0 điểm) a) Xác định các hệ số a, b của hàm số y = ax + b, biết đồ thị của nó là đường thẳng song song với đường thẳng y = – 2x + 1 và đi qua điểm M(1 ; – 3). b) Giải hệ phương trình (không sử dụng máy tính cầm tay): 2x y 3 2x y 1 Câu 3: (2,0 điểm) 1 Cho parabol (P): y x2 và đường thẳng (d): y = (m – 1)x – 2 (với m là tham số). 2 a) Vẽ (P). b) Tìm m để (d) tiếp xúc với (P) tại điểm có hoành độ dương. c) Với m tìm được ở câu b), hãy xác định tọa độ tiếp điểm của (P) và (d). Câu 4: (4,0 điểm) Cho tam giác ABC vuông tại A. Qua C kẻ đường thẳng d vuông góc với AC. Từ trung điểm M của cạnh AC kẻ ME vuông góc với BC (E thuộc BC), đường thẳng ME cắt đường thẳng d tại H và cắt đường thẳng AB tại K. a) Chứng minh: ∆AMK = ∆CMH, từ đó suy ra tứ giác AKCH là hình bình hành. b) Gọi D là giao điểm của AH và BM. Chứng minh tứ giác DMCH nội tiếp và xác định tâm O của đường tròn ngoại tiếp tứ giác đó. c) Chứng minh: AD.AH = 2ME.MK. d) Cho AB = a và A· CB 300 . Tính độ dài đường tròn ngoại tiếp tứ giác DMCH theo a. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN QUẢNG NAM Năm học: 2012 – 2013 Khóa thi: Ngày 4 tháng 7 năm 2012 ĐỀ CHÍNH THỨC Môn: TOÁN (Chuyên Toán) Thời gian làm bài: 150 phút (không kể thời gian giao đề) 54
  54. Câu 1: (1,5 điểm) a a 6 1 a) Rút gọn biểu thức: A = (với a ≥ 0 và a ≠ 4). 4 a a 2 28 16 3 b) Cho x . Tính giá trị của biểu thức: P (x2 2x 1)2012 . 3 1 Câu 2: (2,0 điểm) a) Giải phương trình: 3(1 x) 3 x 2 . 2 x xy 4x 6 b) Giải hệ phương trình: 2 y xy 1 Câu 3: (1,5 điểm) Cho parabol (P): y = − x2 và đường thẳng (d): y = (3 − m)x + 2 − 2m (m là tham số). a) Chứng minh rằng với m ≠ −1 thì (d) luôn cắt (P) tại 2 điểm phân biệt A, B. b) Gọi yA, yB lần lượt là tung độ các điểm A, B. Tìm m để |yA − yB| = 2. Câu 4: (4,0 điểm) Cho hình chữ nhật ABCD có AB = 4 cm, AD = 2 cm. Đường thẳng vuông góc với AC tại C cắt các đường thẳng AB và AD lần lượt tại E và F. a) Chứng minh tứ giác EBDF nội tiếp trong đường tròn. b) Gọi I là giao điểm của các đường thẳng BD và EF. Tính độ dài đoạn thẳng ID. c) M là điểm thay đổi trên cạnh AB (M khác A, M khác B), đường thẳng CM cắt đường thẳng AD tại N. 3 Gọi S1 là diện tích tam giác CME, S2 là diện tích tam giác AMN. Xác định vị trí điểm M để S S . 1 2 2 Câu 5: (1,0 điểm) Cho a, b là hai số thực không âm thỏa: a + b ≤ 2. 2 a 1 2b 8 Chứng minh: . 1 a 1 2b 7 Hết 55
  55. ĐỀ CHÍNH THỨC 56
  56. SỞ GIÁO DỤC – ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT VĨNH LONG NĂM HỌC 2012 – 2013 Môn thi : TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài : 120 phút, không kể thời gian giao đề Câu 1: (2,5 điểm) Giải phương trình và hệ phương trình: a) 2x – 1 = 3 b) x2 12x 35 0 2x 3y 13 c) 3x y 9 Câu 2: (2,5 điểm) a) Vẽ đường thẳng (d): y = 2x – 1 b) Chứng minh rằng đường thẳng (d) tiếp xúc với parabol (P): y = x2 c) Tìm a và b để đường thẳng (d’): y = ax + b song song với đường thẳng (d) và đi qua điểm M(0; 2). Câu 3: (1,0 điểm) Tìm tham số thực m để phương trình x 2 – 2mx + m – 1 = 0 có một nghiệm bằng 0. Tính nghiệm còn lại. Câu 4: (1,0 điểm) a a a a Rút gọn biểu thức: A 1 1 , với a 0,a 1 a 1 a 1 Câu 5: (2 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Gọi AH và BK lần lượt là các đường cao của tam giác ABC. a) Chứng minh tứ giác AKHB nội tiếp đường tròn. Xác định tâm của đường tròn này b) Gọi (d) là tiếp tuyến với đường tròn (O) tại C. Chứng minh rằng A· BH H· KC và HK  OC . Câu 6: (1 điểm) Tính diện tích xung quanh và thể tích của một hình nón có đường kính đường tròn đáy d = 24 (cm) và độ dài đường sinh  20 (cm). 58
  57. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LƠP 10 THPT TỈNH BÀ RỊA-VŨNG TÀU Năm học 2012 – 2013 ĐỀ CHÍNH THỨC MÔN THI: TOÁN Ngày thi: 05 tháng 7 năm 2012 (Thời gian làm bài: 120 phút, không kể thời gian giao đề) Bài 1: (3,0 điểm) a) Rút gọn biểu thức: A = 5 3 2 48 300 b) Giải phương trình: x2 + 8x – 9 = 0 x y 21 c) Giải hệ phương trình: 2x y 9 1 1 Bài 2: (1,5 điểm) Cho parabol (P): y = x2 và đường thẳng (d): y = x + 2 4 2 a) Vẽ (P) và (d) trên cùng một mặt phẳng tọa độ b) Tìm tọa độ giao điểm của (P) và (d) bằng phép tính. Bài 3: (1,5 điểm) Hai đội công nhân cùng làm một công việc. Nếu hai đội làm chung thì hoàn thành sau 12 ngày. Nếu mỗi đội làm riêng thì dội một sẽ hoàn thành công việc nhanh hơn đội hai là 7 ngày. Hỏi nếu làm riêng thì mỗi đội phải làm trong bao nhiêu ngày để hoàn thành công việc đó? Bài 4: (3,5 điểm) Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên Ax lấy điểm M sao cho AM > AB, MB cắt (O) tại N (N khác B). Qua trung điểm P của đoạn AM, dựng đường thẳng vuông góc với AM cắt BM tại Q. a) Chứng minh tứ giác APQN nội tiếp đường tròn. b) Gọi C là điểm trên cung lớn NB của đường tròn (O) (C khác N và C khác B). Chứng minh: B· CN O· QN c) Chứng minh PN là tiếp tuyến của đường tròn (O). d) Giả sử đường tròn nội tiếp ANP có độ dài đường kính bằng độ dài đoạn OA. AM Tính giá trị của AB Bài 5: (0,5 điểm) Cho phương trình x2 2 m 1 x m2 m 1 0 (m là tham số). Khi phương trình trên có nghiệm 2 2 x1, x2 , tìm giá trị nhỏ nhất của biểu thức: M x1 1 x2 1 m 59
  58. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH LỚP 10 THPT TỈNH HẬU GIANG NĂM HỌC 2012 – 2013 MÔN: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) Đề thi có 01 trang 3 6 2 8 Bài 1: (0,5 điểm) Rút gọn biểu thức: A 1 2 1 2 Bài 2: (1,5 điểm) Không sử dụng máy tính cầm tay, hãy giải phương trình và hệ phương trình sau: 2 x 2y 5 a) x x 20 0 b) 2x y 1 Bài 3: (2,0 điểm) a) Vẽ đồ thị (P) của hàm số: y = -2x2 b) Tìm toạ độ các giao điểm của (P) và đường thẳng (D): y = x – 1 bằng phép tính. Bài 4: (2,0 điểm) Cho phương trình x2 2 m 1 x m 3 0 (m là tham số) a) Chứng minh phương trình luôn có 2 nghiệm phân biệt. 2 2 b) Gọi hai nghiệm của phương trình là x1, x2 . Xác định m để giá trị của biểu thức A x1 x2 nhỏ nhất Bài 5: (4,0 điểm) Cho đường tròn (O; R) và một điểm S ở bên ngoài đường tròn vẽ hai tiếp tuyến SA, SB và đường thẳng a đi qua S cắt đường tròn (O; R) tại M, N với M nằm giữa S và N (đường thẳng a không đi qua tâm O). a) Chứng minh SO AB b) Gọi I là trung điểm của MN và H là giao điểm của SO và AB; hai đường thẳng OI và AB cắt nhau tại E. Chứng minh: OI.OE = R2 c) Chứng minh tứ giác SHIE nội tiếp đường tròn d) Cho SO = 2R và MN = R3 . Tính diện tích tam giác ESM theo R 60
  59. SỞ GIÁO DỤC VÀ ĐÀO TẠO BẾN TRE ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH 10 TRUNG HỌC PHỔ THÔNG CHUYÊN BẾN TRE NĂM HỌC 2012 – 2013 MÔN TOÁN (chung) Thời gian 120 phút (không kể phát đề) Câu 1 (2,0 điểm). Không dùng máy tính bỏ túi, hãy rút gọn các biểu thức sau: 2 3 a) A = 6 5 5 3 6 3 2x x x 1 x x 1 b) B = , (với x > 0) x x 1 x x 1 Câu 2 (2,5 điểm). Giải phương trình và hệ phương trình sau: 2 a) x 2 x 1 3 x 2 x 1 4 0 2 6 11 x y b) 4 9 1 x y Câu 3 (2,5 điểm). 2 a) Chứng minh rằng phương trình x 2mx 3m 8 0 luôn có hai nghiệm phân biệt x1; x2 với mọi m. Với giá trị nào của m thì hai nghiệm x1; x2 thỏa mãn x1 2 x 2 2 0 b) Cho x, y, z là ba số thực dương thỏa: x 2 y2 z2 1 . Chứng minh rằng: 1 1 1 x3 y3 z3 3 x 2 y2 y2 z2 z2 x 2 2xyz Đẳng thức xảy ra khi nào? Câu 4 (3,0 điểm). Cho nửa đường tròn tâm O đường kính AB. Từ A, B vẽ các tiếp tuyến Ax, By về phía có chứa nửa đường tròn (O). Lấy điểm M thuộc đoạn thẳng OA; điểm N thuộc nửa đường tròn (O). Đường tròn (O’) ngoại tiếp tam giác AMN cắt Ax tại C; đường thẳng CN cắt By tại D. a) Chứng minh tứ giác BMND nội tiếp. b) Chứng minh DM là tiếp tuyến của đường tròn (O’). 3/ Gọi I là giao điểm của AN và CM; K là giao điểm của BN và DM. Chứng minh IK song song AB. 61
  60. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH 10 BẾN TRE TRUNG HỌC PHỔ THÔNG CHUYÊN BẾN TRE NĂM HỌC 2012 – 2013 ĐỀ CHÍNH THỨC MÔN TOÁN CHUYÊN Thời gian 120 phút (không kể phát đề) Bài 1: (3 điểm) Cho biểu thức x 8 x 1 A x 2 : với x 0 x x 8 x 2 x 4 2 x 1/ Rút gọn biểu thức A. 8 2/ Đặt B x . Tìm x để biểu thức B đạt giá trị nhỏ nhất x 6 A Bài 2: Giải các phương trình và hệ phương trình sau 1/ 2x 2 8x x 2 4x 16 4 2/ 3 x 2 2 10 x3 1 2x y xy 13 3/ 1 1 15 2 x 1 y 2 Bài 3: 1/ Xác định tất cả các giá trị của m để phương trình x 2 2x 2m 5 0 có hai nghiệm phân biệt x1; x2 . Với giá trị nào của m thì hai nghiệm x1; x2 thỏa điều kiện x1 mx 2 x 2 mx1 10 2/ Cho ba số thực dương a, b, c. Chứng minh rằng a 2 b2 c2 a b c b 3c c 3a a 3b 4 Bài 4: Cho tam giác ABC nhọn, vẽ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên hai cạnh AB, AC. Đường thẳng qua A vuông góc với EF cắt cạnh BC tại D. 1/ Chứng minh đường thẳng AD đi qua tâm đường tròn ngoại tiếp của tam giác ABC. 2/ Gọi I, K lần lượt là hình chiếu của D lên hai cạnh AB, AC. Chứng minh tam giác DIK đồng dạng với tam giác HEF. BH BD AB2 3/ Chứng minh . CD CH AC2 62
  61. SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ THI TUYỂN SINH VÀO LỚP 10 AN GIANG Năm học 2012-2013 ĐỀ CHÍNH THỨC Môn: TOÁN Khóa ngày 11 -7 -2012 Thời gian làm bài : 120 phút SBD PHÒNG (Không kể thời gian phát đề) Ngày thi: 12-7-2012 Bài 1. (2,5 điểm) a) Rút gọn A = 2 16 - 6 9 36 b) Giải phương trình bậc hai : x2 – 22 x +1 = 0 3x y 7 c) Giải hệ phương trình : 2x y 3 Bài 2. (2,0 điểm) Cho hàm số y = x + 1 (*) có đồ thị là đường thẳng ( d ) a) Tìm hệ số góc và vẽ đồ thị hàm số (*) b) Tìm a để (P): y = ax2 đi qua điểm M (1 ;2).Xác định tọa độ giao điểm của đường thẳng (d) và Parabol (P) với a vừa tìm được . Bài 3. (2,0 điểm) Cho phương trình x2 – 2 (m+1) x + m2 + 3 = 0 a) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt. b) Tìm m để phương trình có hai nghiệm thỏa tích hai nghiệm không lớn hơn tổng hai nghiệm. Bài 4. (3,5 điểm) Cho đường tròn ( O) bán kính R = 3 cm và một điểm I nằm ngoài đường tròn, biết rằng OI = 4cm.Từ I kẻ hai tiếp tuyến IA và IB với đường tròn (A,B là tiếp điểm). a) Chứng minh tứ giác OAIB nội tiếp. b)Từ I kẻ đường thẳng vuông góc với OI cắt tia OA tại O’.Tính OO’ và diện tích tam giác IOO’ . c) Từ O’ kẻ O’C vuông góc BI cắt đường thẳng BI tại C.Chứng minh O’I là tia phân giác của A· O'C Hết 64
  62. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT BÌNH PHƯỚC NĂM HỌC 2012 – 2013 MÔN THI : TOÁN ĐỀ CHÍNH THỨC (Thời gian: 120 phút không kể thời gian giao đề) Ngày thi: 29/6/2012 Câu 1 (4,0 điểm) 1. Tính giá trị các biểu thức sau: V 3 5 2 5 L 3 (1 3)2 x x x x 2. Rút gọn biểu thức sau: R 1 1 , với 0 x 1. 1 x 1 x Câu 2 (4,0 điểm) 1. Cho parabol (P): y x2 và đường thẳng (d): y 2x 3 . a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ. b) Xác định tọa độ giao điểm của (P) và (d). 2x 3y 40 2. Không sử dụng máy tính, giải hệ phương trình: . x 5y 1 Câu 3 (5,0 điểm) 1. Cho phương trình x2 2mx m 0 a) Giải phương trình khi m = 1. b) Xác định m để phương trình có hai nghiệm phân biệt x1, x2 sao cho biểu thức 1 1 T 2 2 đạt giá trị lớn nhất. x1 2mx2 11(m 1) x2 2mx1 11(m 1) 2. Một mảnh đất hình chữ nhật có diện tích 240m2. Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì diện tích mảnh đất không đổi. Tính kích thước của mảnh đất ban đầu. Câu 4 (2,0 điểm) 1 Cho tam giác ABC vuông tại A có cạnh AB 5cm , cos B . Hãy tính các cạnh, các góc và độ 2 dài trung tuyến AM của tam giác ABC. Câu 5 (5,0 điểm) Cho đường tròn (O,R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA, SB của đường tròn (O,R), (với A, B là các tiếp điểm). Một đường thẳng đi qua S (không đi qua O) cắt đường tròn tại hai điểm M và N, (M nằm giữa S và N). Gọi H là giao điểm của SO và AB, I là trung điểm MN. Hai đường thẳng IO và AB cắt nhau tại E. 1. Chứng minh: SAOB và SHIE là các tứ giác nội tiếp đường tròn. 2. Chứng minh: ABC đồng dạng EOH và IO.OE R2 . 3. Cho SO 2R, MN R 3 . Tính diện tích ESM theo R. 67