Đề cương ôn tập thi môn Toán học Lớp 12- Phương trình đường thẳng

doc 12 trang thungat 2700
Bạn đang xem tài liệu "Đề cương ôn tập thi môn Toán học Lớp 12- Phương trình đường thẳng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_cuong_on_tap_thi_mon_toan_hoc_lop_12_phuong_trinh_duong_t.doc

Nội dung text: Đề cương ôn tập thi môn Toán học Lớp 12- Phương trình đường thẳng

  1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG A. KIẾN THỨC CƠ BẢN I. Phương trình đường thẳng:  Cho đường thẳng đi qua điểm M 0 x0; y0; z0 và nhận vectơ a a1;a2 ;a3 với 2 2 2 a1 a2 a3 0 làm vectơ chỉ phương. Khi đó có phương trình tham số là : x x0 a1t y y0 a2t; t ¡ z z0 a2t  Cho đường thẳng đi qua điểm M 0 x0; y0; z0 và nhận vectơ a a1;a2 ;a3 sao cho a1a2a3 0 làm vectơ chỉ phương. Khi đó có phương trình chính tắc là : x x y y z z 0 0 0 a1 a2 a3 II. Góc: 1. Góc giữa hai đường thẳng: có vectơ chỉ phương a 1 1 2 có vectơ chỉ phương a2   a1.a2 Gọi là góc giữa hai đường thẳng và1 . Ta2 có: cos   a1 . a2 2. Góc giữa đường thẳng và mặt phẳng: có vectơ chỉ phương a  có vectơ chỉ phương n   a .n Gọi là góc giữa hai đường thẳng và ( . )Ta có: sin   a . n III. Khoảng cách: 1. Khoảng cách từ điểm M đến đường thẳng  : đi qua điểm M 0 và có vectơ chỉ phương a   a , M M 0 d M ,  a 2. Khoảng cách giữa hai đường thẳng chéo nhau: đi qua điểm M và có vectơ chỉ phương a 1  1 2 đi qua điểm N và có vectơ chỉ phương a2    a ,a .MN 1 2 d 1, 2 =   a ,a 1 2
  2. Các dạng toán viết PT đường thẳng trong không gian thường gặp: 1. Viết phương trình đường thẳng đi qua hai điểm phân biệt A, B .  Cách giải: Xác định vectơ chỉ phương của là AB . 2. Đường thẳng đi qua điểm M và song song với d . Cách giải: Trong trường hợp đặc biệt:  Nếu song song hoặc trùng bới trục Ox thì có vectơ chỉ phương là a i 1;0;0  Nếu song song hoặc trùng bới trục Oy thì có vectơ chỉ phương là a j 0;1;0  Nếu song song hoặc trùng bới trục Oz thì có vectơ chỉ phương là a k 0;1;0    Các trường hợp khác thì có vectơ chỉ phương là a ad , với ad là vectơ chỉ phương của d 3. Viết phương trình đường thẳng đi qua điểm M và vuông góc với mặt phẳng .    Cách giải: Xác định vectơ chỉ phương của là a n , với n là vectơ pháp tuyến của . 4. Viết phương trình đường thẳng đi qua điểm M và vuông góc với hai đường thẳng d1,d2 (hai đường thẳng không cùng phương).      Cách giải: Xác định vectơ chỉ phương của là a a ,a , với a ,a lần lượt là vectơ chỉ phương của 1 2 1 2 d1,d2 . 5. Viết phương trình đường thẳng đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng .      Cách giải: Xác định vectơ chỉ phương của là a a ,n , với a là vectơ chỉ phương của d , n là d d vectơ pháp tuyến của . 6. Viết phương trình đường thẳng đi qua điểm A và song song với hai mặt phẳng ,  ; ( ,  là hai mặt phẳng cắt nhau)      Cách giải: Xác định vectơ chỉ phương của là a n ,n , với n ,n lần lượt là vectơ pháp tuyến của   ,  . 7. Viết phương trình đường thẳng là giao tuyến của hai mặt phẳng và  . Cách giải: Lấy một điểm bất kì trên , bằng cách cho một ẩn bằng một số tùy ý.      Xác định vectơ chỉ phương của là a n ,n , với n ,n lần lượt là vectơ pháp tuyến của ,  .   8. Viết phương trình đường thẳng đi qua điểm A và cắt hai đường thẳng d1,d2 A d1, A d2 .      Cách giải: Xác định vectơ chỉ phương của là a n ,n , với n ,n lần lượt là vectơ pháp tuyến của 1 2 1 2 mp A,d1 ,mp A,d2 . 9. Viết phương trình đường thẳng nằm trong mặt phẳng và cắt hai đường thẳng d ,d .   1 2 Cách giải: Xác định vectơ chỉ phương của là a AB , với A d1  , B d2  10. Viết phương trình đường thẳng đi qua điểm A , vuông góc và cắt d . Cách giải: Xác định B  d . Viết phương trình đường thẳng đi qua A, B . 11. Viết phương trình đường thẳng đi qua điểm A , vuông góc với d1 và cắt d2 , với A d2 . Cách giải: Xác định B  d2 . Viết phương trình đường thẳng đi qua A, B . 12. Viết phương trình đường thẳng đi qua điểm A , cắt đường thẳng d và song song với mặt phẳng . Cách giải: Xác định B  d .
  3. Viết phương trình đường thẳng đi qua A, B . 13. Viết phương trình đường thẳng nằm trong mặt phẳng cắt và vuông góc đường thẳng d . Cách giải: Xác định A d  .     Đường thẳng đi qua A và có vectơ chỉ phương của là a a ,n , với a là vectơ chỉ phương của d d  d , n là vectơ pháp tuyến của . 14. Viết phương trình đường thẳng đi qua giao điểm A của đường thẳng d và mặt phẳng , nằm trong và vuông góc đường thẳng d (ở đây d không vuông góc với ) . Cách giải: Xác định A d  .     Đường thẳng đi qua A và có vectơ chỉ phương của là a a ,n , với a là vectơ chỉ phương của d d  d , n là vectơ pháp tuyến của . 15. Viết phương trình đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau d1,d2 . Cách giải: AB  d1 Xác định A  d1, B  d2 sao cho AB  d2 Viết phương trình đường thẳng đi qua hai điểm A, B . 16. Viết phương trình đường thẳng song song với đường thẳng d và cắt cả hai đường thẳng d1,d2 . Cách giải:    Xác định A  d , B  d sao cho AB,a cùng phương, với a là vectơ chỉ phương của d . 1 2 d d   Viết phương trình đường thẳng đi qua điểm A và có vectơ chỉ phương ad a . 17. Viết phương trình đường thẳng vuông góc với mặt phẳng và cắt cả hai đường thẳng d1,d2 . Cách giải:    Xác định A  d , B  d sao cho AB,n cùng phương, với n là vectơ pháp tuyến của . 1 2   Viết phương trình đường thẳng đi qua điểm A và có vectơ chỉ phương ad n . 18. Viết phương trình là hình chiếu vuông góc của d lên mặt phẳng .    Cách giải : Xác định H sao cho AH  ad ,với ad là vectơ chỉ phương của d . Viết phương trình mặt phẳng  chứa d và vuông góc với mặt phẳng . Viết phương trình đường thẳng là giao tuyến của hai mặt phẳng và  19. Viết phương trình là hình chiếu song song của d lên mặt phẳng theo phương d ' . Cách giải :  Viết phương trình mặt phẳng  chứa d và có thêm một véc tơ chỉ phương ud' . Viết phương trình đường thẳng là giao tuyến của hai mặt phẳng và  .
  4. B.KỸ NĂNG CƠ BẢN 1. Học sinh xác định được vectơ chỉ phương và điểm nào đó thuộc đường thẳng khi cho trước phương trình. 2. Học sinh biết cách chuyển từ phương trình tham số qua phương trình chính tắc và ngược lại. 3. Học sinh lập được phương trình chính tắc và phương trình tham số. 4. Học sinh tìm được hình chiếu, điểm đối xứng.
  5. BÀI TẬP TRẮC NGHIỆM PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KG x 2 2t x 6 2t ' Câu 1. Trong không gian Oxyz, cho hai đường thẳng d : y 3 2t và d’: y 3 2t ' . Xét các mệnh đề z 1 3t z 7 9t ' sau:  (I)d đi qua A(2 ;3 ;1) và có véctơ chỉ phương a 2;2;3  (II) d’ đi qua A’ (0;-3;-11) và có véctơ chỉ phương a ' 2;2;9  (III)a và a ' không cùng phương nên d không song song với d’     (IV) Vì a ;a ' .AA' 0 nên d và d’ đồng phẳng và chúng cắt nhau Dựa vào các phát biểu trên, ta kết luận: A. Các phát biểu (I), (III) đúng, các phát biểu (II), (IV) sai. B. Các phát biểu (I), (II) đúng, các phát biểu (III), (IV) sai. C. Các phát biểu (I) đúng, các phát biểu (II), (III), (IV) sai. D. Các phát biểu (IV) sai, các phát biểu còn lại đúng. x 2 t Câu 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình tham số y 3t . z 1 5t Phương trình chính tắc của đường thẳng d là? x 2 y z 1 x 2 y z 1 x 2 y z 1 A. x 2 y z 1. B. . C. . D. . 1 3 5 1 3 5 1 3 5 Câu 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng có phương trình chính tắc x 3 y 1 z . Phương trình tham số của đường thẳng là? 2 3 1 x 3 2t x 2 3t x 3 2t x 3 2t A. y 1 3t. B. y 3 t. C. y 1 3t . D. y 1 3t . z t z t z t z t x 2 y 1 z 3 Câu 4. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : . Đường thẳng d  2 1 3 đi qua điểm M và có vectơ chỉ phương a có tọa độ là:  d  A.M 2; 1;3 ,a 2;1;3 . B. M 2; 1; 3 ,a 2; 1;3 .  d  d C. M 2;1;3 ,ad 2; 1;3 . D. M 2; 1;3 ,ad 2; 1; 3 . x t 2 Câu 5. Trong không gian với hệ tọa độ Oxyz cho, đường thẳng d : y 2 3 .t Đường thẳng dđi qua z 1 t  điểm M và có vectơ chỉ phương a có tọa độ là:  d  A. M 2;2;1 ,a 1;3;1 . B. M 1;2;1 ,a 2;3;1 . d d C.M 2; 2; 1 ,ad 1;3;1 . D. M 1;2;1 ,ad 2; 3;1 . Câu 6. Trong không gian với hệ tọa độ Oxyz ,phương trình nào sau đây là phương trình tham số của đường thẳng d qua điểm M 2;3;1 và có vectơ chỉ phương a 1; 2;2 ? x 2 t x 1 2t x 1 2t x 2 t A. y 3 2t. B. y 2 3t. C. y 2 3t. D. y 3 2t . z 1 2t z 2 t z 2 t z 1 2t Câu 7. Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A 1; 2;5 và B 3;1;1 ?
  6. x 1 y 2 z 5 x 3 y 1 z 1 A. . B. . 2 3 4 1 2 5 x 1 y 2 z 5 x 1 y 2 z 5 C. . D. . 2 3 4 3 1 1 Câu 8. Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A 1;3;2 , B 2;0;5 ,C 0; 2;1 . Phương trình đường trung tuyến AM của tam giác ABC là. x 1 y 3 z 2 x 1 y 3 z 2 A. . B. . 2 4 1 2 4 1 x 1 y 3 z 2 x 2 y 4 z 1 C. . D. . 2 4 1 1 1 3 Câu 9. Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A 1;4; 1 , B 2;4;3 ,C 2;2; 1 . Phương trình tham số của đường thẳng đi qua điểm A và song song với BC là x 1 x 1 x 1 x 1 A. y 4 t . B. y 4 t . C. y 4 t . D. y 4 t . z 1 2t z 1 2t z 1 2t z 1 2t Câu 10. Trong không gian với hệ tọa độ Oxyz . Phương trình tham số của đường thẳng đi qua điểm M 1;3;4 và song song với trục hoành là. x 1 t x 1 x 1 x 1 A. y 3 . B. y 3 t. C. y 3 . D. y 3 . y 4 y 4 y 4 t y 4 t x 1 2t Câu 11. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y t . Phương trình chính tắc z 3 2t của đường thẳng đi qua điểm A 3;1; 1 và song song với d là x 3 y 1 z 1 x 3 y 1 z 1 A. . B. . 2 1 2 2 1 2 x 2 y 1 z 2 x 2 y 1 z 2 C. . D. . 3 1 1 3 1 1 x 2 y 1 z 3 Câu 12. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : . Phương trình 2 1 3 tham số của đường thẳng đi qua điểm M 1;3; 4 và song song với d là x 2 t x 1 2t x 1 2t x 1 2t A. y 1 3t. B. y 3 t . C. y 3 t . D. y 3 t . z 3 4t z 4 3t z 4 3t z 4 3t Câu 13. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2x y z 3 0 . Phương trình chính tắc của của đường thẳng đi qua điểm M 2;1;1 và vuông góc với P là x 2 y 1 z 1 x 2 y 1 z 1 A. . B. . 2 1 1 2 1 1 x 2 y 1 z 1 x 2 y 1 z 1 C. . D. . 2 1 1 2 1 1 Câu 14. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng : x 2y 2z 3 0.Phương trình tham số của đường thẳng d đi qua A 2;1; 5 và vuông góc với là x 2 t x 2 t x 2 t x 1 2t A. y 1 2t. B. y 1 2t. C. y 1 2t . D. y 2 t. z 5 2t z 5 2t z 5 2t z 2 5t
  7. Câu 15. Trong không gian với hệ tọa độ Oxyz,phương trình đường thẳng đi qua điểm A 2; 1;3 và vuông góc với mặt phẳng Oxz là. x 2 x 2 x 2 x 2 t A. y 1 t. B. y 1 t. C. y 1 t. D y 1 . z 3 z 3 z 3 z 3 t Câu 16. Trong không gian với hệ tọa độ Oxyz ,cho tam giác ABC có A 2;1; 2 ,B 4; 1;1 ,C 0; 3;1 . Phương trình d đi qua trọng tâm của tam giác ABC và vuông góc với mặt phẳng ABC là x 2 t x 2 t x 2 t x 2 t A. y 1 2t. B. y 1 2t. C. y 1 2t. D. y 1 2t. z 2t z 2t z 2t z 2t Câu 17. (ĐH D2007). Trong không gian với hệ tọa độ Oxy z, cho hai điểm A 1;4;2 và B 1;2;4 . Phương trình d đi qua trọng tâm của OAB và vuông góc với mặt phẳng OAB là x y 2 z 2 x y 2 z 2 A. . B. . 2 1 1 2 1 1 x y 2 z 2 x y 2 z 2 C. . D. . 2 1 1 2 1 1 Câu 18. Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A 0;1;2 , B 2; 1; 2 ,C 2; 3; 3 . Đường thẳng d đi qua điểm B và vuông góc với mặt phẳng ABC . Phương trình nào sau đây không phải là phương trình của đường thẳng d . x 2 t x 2 t x 2 6t x 2 t A. y 1 3t . B. y 1 3t . C. y 1 18t . D. y 1 3t . z 2 2t z 2 2t z 2 12t z 2 2t Câu 19. Trong không gian với hệ tọa độ Oxyz ,phương trình đường thẳng đi qua điểm M 2;1; 5 , đồng thời vuông góc với hai vectơ a 1;0;1 và b 4;1; 1 là x 2 y 1 z 5 x 2 y 1 z 5 A. . B. . 1 5 1 1 5 1 x 2 y 1 z 5 x 1 y 5 z 1 C. . D. . 1 5 1 2 1 5 Câu 20. (ĐH B2013). Trong không gian với hệ tọa độ Oxy z, cho hai điểm A 1; 1;1 , B 1;2;3 và x 1 y 2 z 3 đường thẳng : . Phương trình đường thẳng đi qua điểm A , đồng thời vuông 2 1 3 góc với hai đường thẳng AB và là x 7 y 2 z 4 x 1 y 1 z 1 A. . B. . 1 1 1 7 2 4 x 1 y 1 z 1 x 1 y 1 z 1 C. . D. . 7 2 4 7 2 4 x 2 y z 1 Câu 21. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d : và 1 2 3 1 x 1 t d : y 3 2t . Phương trình đường thẳng đi qua điểm A 2;3; 1 và vuông góc với hai đường 2 z 5 2t thẳng d1, d2 là x 8 2t x 2 8t x 2 8t x 2 8t A. y 1 3t . B. y 3 3t . C. y 3 t . D. y 3 t . z 7 t z 1 7t z 1 7t z 1 7t
  8. Câu 22. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2x y 2z 1 0 và đường thẳng x 1 y z 3 : . Phương trình đường thẳng d đi qua điểm B 2; 1;5 song song với P và 2 1 3 vuông góc với là x 2 y 1 z 5 x 2 y 1 z 5 A. . B. . 5 2 4 5 2 4 x 2 y 1 z 5 x 5 y 2 z 4 C. . D. . 5 2 4 2 1 5 Câu 23. Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng : x 2 y 2z 3 0 và  : 3x 5y 2z 1 0 . Phương trình đường thẳng d đi qua điểm M 1;3; 1 , song song với hai mặt phẳng ,  là x 1 14t x 1 14t x 1 t x 1 t A. y 3 8t . B. y 3 8t . C. y 3 8t . D. y 3 t . z 1 t z 1 t z 1 t z 1 t Câu 24. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng : 2x y 2z 3 0 . Phương trình đường thẳng d đi qua điểm A 2; 3; 1 , song song với hai mặt phẳng , Oyz là. x 2 t x 2 x 2 x 2t A. y 3 . B. y 3 2t. C. y 3 2t. D. y 2 3t. z 1 t z 1 t z 1 t z 1 t Câu 25. Trong không gian với hệ tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng : x 3y z 0 và  : x y z 4 0 0 . Phương trình tham số của đường thẳng d là x 2 t x 2 t x 2 t x 2 t A. y t . B. y t . C. y t . D. y t . z 2 2t z 2 2t z 2 2t z 2 2t Câu 26. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng là giao tuyến của hai mặt phẳng : x 2 y z 1 0 và  : 2x 2 y 3z 4 0 . Phương trình đường thẳng d đi qua điểm M (1; 1;0) và song song với đường thẳng là x 1 y 1 z x 1 y 1 z x 1 y 1 z x 8 y 1 z A. . B. . C. . D. . 8 1 6 8 1 6 8 1 6 1 1 6 x 1 y 3 z Câu 27. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : . Phương trình 2 1 2 đường thẳng đi qua điểm A 2; 1; 3 , vuông góc với trục Oz và d là x 2 t x 2 t x 2t x 2 t A. y 1 2t. B. y 1 2t . C. y 1 2t. D. y 1 2t. y 3 y 3 y 3 y 3 Câu 28. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2x 3y 5z 4 0 . Phương trình đường thẳng đi qua điểm A 2;1; 3 , song song với P và vuông góc với trục tung là x 2 5t x 2 5t x 2 5t x 2 5t A. y 1 . B. y 1 . C. y 1 t . D. y 1 . y 3 2t y 3 2t y 3 2t y 3 2t 2 2 2 Câu 29. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x 1 y 2 z 3 9 . Phương trình đường thẳng d đi qua tâm của mặt cầu S , song song với : 2x 2 y z 4 0 và vuông x 1 y 6 z 2 góc với đường thẳng : là. 3 1 1
  9. x 1 t x 1 t x 1 t x 1 t A. y 2 5t. B. y 2 5t . C. y 2 5t. D. y 2 5t. z 3 8t z 3 8t z 3 8t z 3 8t x 1 2t Câu 30. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y 1 t . Hình chiếu vuông góc của z 2 t d lên mặt phẳng Oxy có phương trình là. x 1 2t x 1 2t x 1 2t x 0 A. y 1 t. B. y 1 t . C. y 1 t . D. y 1 t. z 0 z 0 z 0 z 0 x 1 2t Câu 31. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y 2 3 .t Hình chiếu vuông góc z 3 t của d lên mặt phẳng Oxz có phương trình là. x 1 2t x 0 x 1 2t x 1 2t A.y 0 . B.y 0 . C. y 0 . D. y 0 . z 3 t z 3 t z 3 t z 3 t x 12 y 9 z 1 Câu 32. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : ,và mặt thẳng 4 3 1 P :3x 5y z 2 0. Gọi d ' là hình chiếu của d lên P . Phương trình tham số của d' là x 62t x 62t x 62t x 62t A. y 25t . B. y 25t . C. y 25t . D. y 25t . z 2 61t z 2 61t z 2 61t z 2 61t x 1 2t Câu 33. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y 2 4t . Hình chiếu song song của z 3 t x 1 y 6 z 2 d lên mặt phẳng Oxz theo phương : có phương trình là: 1 1 1 x 3 2t x 3 t x 1 2t x 3 2t A. y 0 . B. y 0 . C. y 0 . D. y 0 . z 1 4t z 1 2t z 5 4t z 1 t x 2 y 1 z 1 Câu 34. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d : và 1 1 3 2 x 1 3t d2 : y 2 t . Phương trình đường thẳng nằm trong : x 2y 3z 2 0 và cắt hai đường z 1 t thẳng d1, d2 là: x 3 y 2 z 1 x 3 y 2 z 1 A. . B. . 5 1 1 5 1 1 x 3 y 2 z 1 x 8 y 3 z C. . D. . 5 1 1 1 3 4
  10. x 2 y 2 z Câu 35. (ĐH D2009) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : và 1 1 1 mặt phẳng P : x 2y 3z 4 0 . Phương trình tham số của đường thẳng d nằm trong P , cắt và vuông góc đường thẳng là: x 1 3t x 3 2t x 3 3t x 3 t A. y 2 3t. B. y 1 t . C. y 1 2t . D. y 1 2t . z 1 t z 1 t z 1 t z 1 t Câu 36. (ĐH D2006) Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng x 2 y 2 z 3 x 1 y 1 z 1 d : và d : . Phương trình đường thẳng đi qua điểm 1 2 1 1 2 1 2 1 A 1;2;3 vuông góc với d1 và cắt d2 là: x 1 y 2 z 3 x 1 y 2 z 3 x 1 y 2 z 3 x 1 y 3 z 5 A. . B. . C. . D. . 1 3 5 1 3 5 1 3 5 1 2 3 x 3 2t Câu 37. (ĐH B2004) Trong không gian với hệ tọa độ Oxy zcho, đường thẳng d : y 1 t . Phương z 1 4t trình chính tắc của đường thẳng đi qua điểm A 4; 2;4 , cắt và vuông góc với d là: x 3 y 2 z 1 x 4 y 2 z 4 A. B. 4 2 4 3 2 1 x 4 y 2 z 4 x 4 y 2 z 4 C. D. 3 2 1 3 2 1 x 1 y 3 z 3 Câu 38. (ĐH A2005). Trong không gian với hệ tọa độ Oxy zcho, đường thẳng d : và 1 2 1 mặt phẳng P :2x y 2z 9 0 . Gọi A là giao điểm của d và P . Phương trình tham số của đường thẳng nằm trong P , đi qua điểm A và vuông góc với d là: x 1 x t x t x 1 t A. y 1 t. B. y 1. C. y 1 . D. y 1 . z 4 t z t z 4 t z t x 3 y 3 z Câu 39. Trong không gian với hệ tọa độ Oxyz, cho điểm A 1;2; 1 và đường thẳng d : . 1 3 2 Phương trình đường thẳng đi qua điểm A , cắt d và song song với mặt phẳng Q : x y z 3 0 là: x 1 y 2 z 1 x 1 y 2 z 1 A. . B. . 1 2 1 1 2 1 x 1 y 2 z 1 x 1 y 2 z 1 C. . D. . 1 2 1 1 2 1 x 1 y 2 z 1 Câu 40. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng : và 1 3 1 2 x 3 x 1 y z 1 2 : . Phương trình đường thẳng song song với d : y 1 t và cắt hai đường 1 2 3 z 4 t thẳng 1; 2 là: x 2 x 2 x 2 x 2 A. y 3 t. B. y 3 t. C. y 3 t. D. y 3 t. z 3 t z 3 t z 3 t z 3 t
  11. C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM I – ĐÁP ÁN 8.4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A B A C A D A C A A B D A C C A A D A B 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 B A A B D C A D D A C C B C D A D C A A 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 B D D C A A C A A D A B A C D A A B II –HƯỚNG DẪN GIẢI x 2 2t x 6 2t ' Câu 1. Trong không gian Oxyz, cho hai đường thẳng d : y 3 2t và d’: y 3 2t ' . Xét các mệnh đề z 1 3t z 7 9t ' sau:  (V)d đi qua A(2 ;3 ;1) và có véctơ chỉ phương a 2;2;3  (VI) d’ đi qua A’ (0;-3;-11) và có véctơ chỉ phương a ' 2;2;9  (VII)a và a ' không cùng phương nên d không song song với d’     (VIII) Vì a ;a ' .AA' 0 nên d và d’ đồng phẳng và chúng cắt nhau Dựa vào các phát biểu trên, ta kết luận: A. Các phát biểu (I), (III) đúng, các phát biểu (II), (IV) sai. B. Các phát biểu (I), (II) đúng, các phát biểu (III), (IV) sai. C. Các phát biểu (I) đúng, các phát biểu (II), (III), (IV) sai. D. Các phát biểu (IV) sai, các phát biểu còn lại đúng. x 2 t Câu 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình tham số y 3t . z 1 5t Phương trình chính tắc của đường thẳng d là? x 2 y z 1 A. x 2 y z 1. B. . 1 3 5 x 2 y z 1 x 2 y z 1 C. . D. . 1 3 5 1 3 5 Hướng dẫn giải Cách 1:  d đi qua điểm A 2;0; 1 và có vectơ chỉ phương ad 1; 3;5 x 2 y z 1 Vậy phương trình chính tắc của d là 1 3 5 Cách 2: x 2 t x 2 t y y 3t t 3 z 1 5t z 1 t 5 x 2 y z 1 Vậy phương trình chính tắc của d là 1 3 5
  12. Câu 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng có phương trình chính tắc x 3 y 1 z . Phương trình tham số của đường thẳng là? 2 3 1 x 3 2t x 2 3t x 3 2t x 3 2t A. y 1 3t. B. y 3 t. C. y 1 3t . D. y 1 3t . z t z t z t z t Hướng dẫn giải Cách 1:  đi qua điểm A 3; 1;0 và có vectơ chỉ phương a 2; 3;1 x 3 2t Vậy phương trình tham số của là y 1 3t z t Cách 2: x 3 t 2 x 3 y 1 z y 1 t t 2 3 1 3 z t 1 x 3 2t Vậy phương trình tham số của là y 1 3t z t