Đề thi khảo sát chất lượng lần 3 môn Toán Lớp 12 - Mã đề 118 - Năm học 2018-2019 - Trường THPT Lý Nhân Tông
Bạn đang xem tài liệu "Đề thi khảo sát chất lượng lần 3 môn Toán Lớp 12 - Mã đề 118 - Năm học 2018-2019 - Trường THPT Lý Nhân Tông", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_khao_sat_chat_luong_lan_3_mon_toan_lop_12_ma_de_118_n.doc
Nội dung text: Đề thi khảo sát chất lượng lần 3 môn Toán Lớp 12 - Mã đề 118 - Năm học 2018-2019 - Trường THPT Lý Nhân Tông
- SỞ GD & ĐT BẮC NINH ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN 3 TRƯỜNG THPT LÝ NHÂN TÔNG NĂM HỌC:2018– 2019 MÔN: TOÁN 12 Thời gian làm bài: 90 phút (Không kể thời gian giao đề) Mã đề thi 118 Họ, tên thí sinh: Số báo danh: x x 1 Câu 1: Với giá trị nào của tham số m thì phương trình 4 m.2 4m 0 có hai nghiệm x1, x 2thoả mãn x1 x2 3 ? A. .m 2 B. . m 4 C. . m D.1 . m 3 Câu 2: Anh Thành mua một mảnh vườn trị giá 300 triệu và vay ngân hàng theo hình thức trả góp. Nếu cuối mỗi tháng, bắt đầu từ tháng thứ nhất, anh Thành trả 5.500.000 đồng và chịu lãi số tiền chưa trả là 0,5% mỗi tháng thì sau bao lâu anh Thành trả hết số tiền trên? A. Hơn 64 tháng B. Gần 63 tháng C. 65 tháng D. Gần 64 tháng 2019 1 Câu 3: Cho hàm số f(x) thỏa mãn f (x)dx 1 . Tính tích phân I f (2019x)dx 0 0 1 A. I = 2019 B. I = 0 C. I D. I = 1 2019 Câu 4: Cho đường cong C : y x3 3x2 . Viết phương trình tiếp tuyến của C tại điểm thuộc C và có hoành độ x0 1 A. .y 9x 5 B. . C.y . 9x 5 D. . y 9x 5 y 9x 5 (x a)sin3x 1 Câu 5: Một nguyên hàm (x 2)cos3xdx cos3x 2019 thì S = a+b-c bằng b c A. 10 B. 14 C. -4 D. 8 Câu 6: Hàm số nào sau đây nghịch biến trên khoảng ( ; ) ? x 1 x 1 A. .y x3 B.3 x. C.y . D. . y y x3 x x 3 x 2 Câu 7: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh bên SA vuông góc với mặt phẳng đáy. SA = AB = 3a, AC = 4a. Tính thể tích của S.ABC là? A. 12a3 B. 32a3 C. 6a3 D. 36a3 Câu 8: Một hình nón có bán kính đáy là 3a, độ dài đường sinh là 5a thì đường cao h của hình nón là? A. 17a. B. 4a C. 8a. D. 12a. Câu 9: Chọn đáp án sai trong các câu sau: A. cos x 1 x k B. cot x 1 x k 4 C. sin x 1 x k2 D. tan x 1 x k 2 4 Câu 10: Có tất cả bao nhiêu số nguyên m thỏa mãn điều kiện hàm số y x3 mx 2 3x m 2 nghịch biến trên khoảng ( ; ). A. 7 B. 8 C. 10 D. 3 Câu 11: Phương trìnhlog2 (2x 1) 2 có nghiệm là: 25 11 5 A. . B. . C. D. 5 3 3 2 2 0 2 Câu 12: Cho f (x)dx 2 và g(x)dx 1. Tính I [x f (x) 3g(x)]dx bằng 0 2 0 Trang 1/7 - Mã đề thi 118
- A. 8 B. 6 C. 9 D. 7 Câu 13: Cho khối lăng trụ đứng tam giác ABC.A’B’C’ có đáy là một tam giác vuông tại A. Cho AC = AB = 2a, góc giữa AC’ và mặt phẳng (ABC) bằng 600. Tính thể tích khối lăng trụ ABC.A'B'C' . A. a3 3 B. 2a3 3 C. 4a3 3 D. 8a3 3 2 Câu 14: Trong khai triển nhị thức (x 2 )10 , số hạng không chứa x bằng x3 A. -210 B. 3360 C. -3360 D. 210 Câu 15: Thiết diện qua trục của một hình trụ là một hình vuông cạnh 3a, diện tích toàn phần của hình trụ là: 3 a2 3 a2 A. Kết quả khác. B. . C. .9 a 2 D. 5 2 Câu 16: Tập xác định của hàm số y (x 1) 5 là: A. R \ {1} B. (1; ) C. . ;2 D. R Câu 17: Gọi m là giá trị nhỏ nhất và M là giá trị lớn nhất của hàm số y 2x3 3x2 1 trên đoạn 1 2; . Tính giá trị của M m 2 A. 4. B. 5 C. 1. D. – 5. Câu 18: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáy (ABCD). Thể tích khối chóp S.ABCD là: a3 3 2a3 3 4a3 3 A. 4a3 3 B. C. D. 3 3 3 4 Câu 19: Tính tích phân (x2 4 x)dx bằng 1 121 120 118 119 A. B. C. D. 3 3 3 3 Câu 20: Bất phương trình: 52x 1 16.5x 3 0 có nghiệm là x 1 x 1 x 1 x 1 A. . B. C. . D. x log3 5 x log3 5 x log5 3 x log5 3 Câu 21: Cho hai hàm số f, g liên tục trên [a;b] và số thực k tùy ý. Trong các khẳng định sau, khẳng định nào sai? b b b b b A. [ f (x) g(x)]dx f (x)dx g(x)dx B. k f (x)dx k f (x)dx a a a a a b a b b C. x f (x)dx f (x)dx D. x f (x)dx x f (x)dx a b a a Câu 22: Trong không gian Oxyz, cho hai điểm A(7;-2;2) và B(-1;-2;4). Phương trình nào dưới đây là phương trình mặt cầu đường kính AB A. (x 3)2 (y 2)2 (z 3)2 17 B. (x 3)2 (y 2)2 (z 3)2 68 C. (x 3)2 (y 2)2 (z 3)2 17 D. (x 3)2 (y 2)2 (z 3)2 2 17 2x 1 Câu 23: Tiệm cận ngang của đồ thị hàm số y là 1 2x 3 1 2 A. .x B. . y y D. y 1 2 2 C. 3 Câu 24: Nghiệm của bất phương trình: ln(2 3x) ln(x 1) là Trang 2/7 - Mã đề thi 118
- 1 1 1 1 A. 1 x B. 1 x C. x D. 1 x 4 4 4 4 Câu 25: Trong không gian Oxyz, cho điểm A(1;3;5). Phương trình nào dưới đây là phương trình mặt phẳng đi qua các điểm là hình chiếu của điểm A trên các mặt phẳng tọa độ? A. 15x + 5y + 3z - 90=0 B. 15x + 5y + 3z - 60=0 y z y z C. x 1 D. x 1 3 5 3 5 Câu 26: Cho hình D giới hạn bởi đường cong y x 2 1 , trục hoành và các đường thẳng x = 0, x = 1. Tính thể tích V của khối tròn xoay tạo thành khi quay D quanh trục hoành. 4 4 A. V B. V C. V 2 D. V 2 3 3 Câu 27: Cho hàm số y f x có bảng biến thiên như sau: Mệnh đề nào dưới đây đúng ? A. Hàm số có giá trị cực tiểu bằng -3 hoặc 2. B. Hàm số đạt cực đại tại x = 0 C. Hàm số có giá trị lớn nhất là 0 và có giá trị nhỏ nhất là -4. D. Đồ thị hàm số có đúng 2 điểm cực đại. Câu 28: Cho hình lập phương ABCD.A B C D có cạnha. Thể tích hình cầu nội tiếp hình lập phương là 4 a3 a3 8 a3 2 a3 3 A. . B. C. D. 3 6 3 2 Câu 29: Đường cong bên là đồ thị của hàm số nào sau đây? A. y x3 3x B. y x 4 2x 2 C. y x4 2x2 D. y x3 3x 1 Câu 30: Có bao nhiêu giá trị dương của tham số m để hàm số y 3x12 (3 m)x9 (m 2020)x8 1đạt cực tiểu tại x = 0 A. 2018 B. 2020 C. 2017 D. 2019 Câu 31: Cho hàm số f (x) (m 2)x3 2x 2 (m 3)x 5. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y f ( x ) có đúng 3 điểm cực trị? A. 5 B. 3 C. 1 D. 4 Câu 32: Một bình đựng nước có dạng hình nón (không có đáy), đựng đầy nước. Người ta thả vào đó một khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18 (dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa của khối cầu đã chìm trong nước (hình dưới). Tính thể tích nước còn lại trong bình. Trang 3/7 - Mã đề thi 118
- A. 6 (dm3) B. 54 (dm3) C. 12 (dm3) D. 24 (dm3) x y Câu 33: Cho 2 số thực x, y thỏa mãnlog x(x 4) y(y 4) xy . Biết giá trị lớn nhất 2 x 2 y 2 xy 2 x 2y 1 a b a của biểu thức P , với a,b,c là các số nguyên dương và tối giản. Tính S =a + b +c. x y 2 c c A. 196 B. 231 C. 195 D. 221 Câu 34: Cho hàm số f(x) có đạo hàm trên R và có đồ thị hàm số y = f’(x) như hình vẽ. Biết rằng f(0) + f(3) =f(2) + f(5). Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) trên đoạn [0;5] lần lượt là: A. f(1); f(3) B. f(0); f(5) C. f(2); f(5) D. f(2); f(0) Câu 35: Cho mặt cầu (S) bán kính R. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp mặt cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất R R 2 A. h B. h R 2 C. h=R D. h 2 2 Câu 36: Ông An có một mảnh vườn hình elip có độ dài trục lớn bằng 16m và độ dài trục bé bằng 10m. Ông muốn trồng hoa trên một dải đất rộng 8m và nhận trục bé của elip làm trục đối xứng (như hình vẽ). Biết kinh phí để trồng hoa 100000đồng/1m 2. Hỏi ông An cần bao nhiêu tiền để trồng hoa trên dải đất đó?(Số tiền được làm tròn đến hàng nghìn) A. 7.128.000 đồng B. 7.862.000 đồng C. 7.653.000 đồng D. 7.826.000 đồng 2 x 2 (2x cos x)cos x 1 sin x c Câu 37: Biết dx a 2 b ln với a, b, c là các số hữu tỉ. Tính 0 x cos x P ac3 b . 5 3 A. P B. P 3 C. P D. P 2 4 2 Câu 38: Trong không gian với hệ tọa độ Oxyz cho A(x;y;z); B(6;-2;4); C(-3;7;-5). Giá trị x, y, z để AB 2BC A. x = 24, y =-20, z =20 B. x= 22, y = 24, z = -20 C. x=22, y = 24, z= -19 D. x = 24, y = -20, z = 22 Trang 4/7 - Mã đề thi 118
- Câu 39: Cho hàm số y ax3 bx 2 cx d(a 0) có đồ thị như hình vẽ bên. f (x) Hỏi đồ thị hàm số g(x) có bao nhiêu đường tiệm cận đứng (x 1)2 (x 2 4x 3) A. 2 B. 4 C. 1 D. 3 Câu 40: Trước kì thi học sinh giỏi, nhà trường tổ chức buổi gặp mặt 12 em học sinh trong đội tuyển. Biết các em đó có số thứ tự trong danh sách lập thành cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 6 ghế và mỗi ghế chỉ được ngồi một học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau. 1 1 1 1 A. B. C. D. 924 10395 954 945 Câu 41: Cho tam giác ABC đều nội tiếp trong đường tròn tâm I đường kính AA’. M là trung điểm BC. Khi quay tam giác ABM cùng với nửa đường tròn đường kính AA’xung quanh đường thẳng AM (như V1 hình vẽ minh họa), ta được khối nón và khối cầu có thể tích lần lượt là V1, V2. Tỷ số bằng: V2 27 4 9 9 A. B. C. D. 32 9 32 4 Câu 42: Tìm tất cả các giá trị thực của tham số m sao cho bất phương trình sau có tập nghiệm là ( ;0] : m.2 x 1 (2m 1)(1 5) x (3 5) x 0 1 1 1 1 A. m B. m C. m D. m 2 2 2 2 Câu 43: Cho hàm số f(x) liên tục, không âm trên [0;3], thỏa mãn f (x) f '(x) 2x f 2 (x) 1 ,với mọi x [0;3] và f(0) = 0. Giá trị của f(3) bằng A. 0 B. 3 C. 1 D. 3 11 1 1 1 1 1 Câu 44: Tính tổng S theo n ta được 2!2015! 4!2013! 6!2011! 2014!3! 2016! 22016 1 22016 1 22016 22016 1 A. S B. S C. S D. S 2015 2015! 2015! 2015 Trang 5/7 - Mã đề thi 118
- Câu 45: Một ô tô đang chạy với vận tốc 20m/s thì người lái đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t)= -10t + 20(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét? A. 5m B. 10m C. 20m D. 40m Câu 46: Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trìnhf (sin x) 3sin x m có nghiệm thuộc khoảng (0; ) . Tổng các phần tử của S bằng A. -5 B. -10 C. -6 D. -8 Câu 47: Cho khối lăng trụ ABC.A'B'C' có thể tích bằng 1. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AA’, BB’. Đường thẳng CM cắt C’A’ tại P, đường thẳng CN cắt C’B’ tại Q. Thể tích khối đa diện A’MPB’NQ bằng 1 2 1 A. B. C. D. 1 2 3 3 Câu 48: Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau: Hàm số y 3 f (x 3) x3 12 nghịch biến trên khoảng nào dưới đây? A. (2; ) B. ( 1;0) C. (0;2) D. ( ; 1) Câu 49: Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-20;20) để hàm số cot x 2m 1 y đồng biến trên khoảng ( ; ) . cot x m 4 2 A. 11 B. 18 C. 10 D. 9 Câu 50: M(1;2;3), A(a;0;0), B(0;b;0), C(0;0;c) trong đó a,b,c là các số dương.Viết phương trình mặt phẳng (P) đi qua A, B,C,M sao cho thể tích khối chóp O.ABC đạt giá trị nhỏ nhất. A. (P): 6x + 3y +2z =0 B. (P): 6x + 3y +2z – 9 = 0 C. (P): 6x +3y +2z -36 =0 D. (P): 6x + 3y +2z – 18 =0 Trang 6/7 - Mã đề thi 118
- HẾT Trang 7/7 - Mã đề thi 118