Đề thi tham khảo môn Toán - Kỳ thi THPT Quốc gia năm 2019 - Mã đề 001

docx 9 trang thungat 4360
Bạn đang xem tài liệu "Đề thi tham khảo môn Toán - Kỳ thi THPT Quốc gia năm 2019 - Mã đề 001", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxde_thi_tham_khao_mon_toan_ky_thi_thpt_quoc_gia_nam_2019_ma_d.docx

Nội dung text: Đề thi tham khảo môn Toán - Kỳ thi THPT Quốc gia năm 2019 - Mã đề 001

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 2019 ĐỀ THI THAM KHẢO Bài thi: TOÁN ( Đề thi có 9 trang) Thời gian làm bài: 90 phút, không kể thời gian phát đề. Họ và tên thí sinh: Mã đề thi 001 Số báo danh: Câu 1. Thể tích của khối lập phương cạnh 2a bằng: A. .8 a3 B. . 2a3 C. . a3 D. . 6a3 Câu 2. Cho hàm số y f x có bảng biến thiên sau Giá trị cực đại của hàm số đã cho bằng A. .1 B. . 2 C. . 0 D. . 5  Câu 3. Trong không gian Oxyz , cho hai điểm A 1;1; 1 ,B 2;3;2 . Vectơ AB có tọa độ là A. . 1;2;3 B. . C.1; . 2;3 D. . 3;5;1 3;4;1 Câu 4. Cho hàm số y f x có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây? A. . 0;1 B. . ; C.1 . D. .1;1 1;0 Câu 5. Với a , b là hai số thực dương tuỳ ý, log ab2 bằng
  2. 1 A. .2 log a logb B. . C. . D.lo g. a 2logb 2 log a logb log a logb 2 1 1 1 Câu 6. Cho f x dx 2 và g x dx 5 , khi đó f x 2g x dx bằng 0 0 0 A. . 3 B. . 12 C. . 8 D. 1. Câu 7. Thể tích của khối cầu bán kính a bằng 4 a3 a3 A. . B. .4 a3 C. . D. . 2 a3 3 3 2 Câu 8. Tập nghiệm của phương trình log2 x x 2 1 là A. . 0 B. . 0;1 C. . 1D.;0 . 1 Câu 9. Trong không gian Oxyz , mặt phẳng Oxz có phương trình là A. .z 0 B. . x C.y . z 0 D. . y 0 x 0 x Câu 10. Họ nguyên hàm của hàm số f (x) e x là 1 1 1 A. .e x x2 CB. . C. . eD.x . x2 C 1 ex x2 C ex 1 C 2 x 1 2 x 1 y 2 z 3 Câu 11. Trong không gian , đường thẳng d : đi qua điểm nào dưới đây? 2 1 2 A. .Q 2; 1;2 B. . C. . M 1; D.2 ;. 3 P 1;2;3 Q 2;1; 2 Câu 12. Với k và n là hai số nguyên dương tùy ý thỏa mãn k n . Mệnh đề nào dưới đây đúng ? n! n! n! k! n k ! A. .C k B. . C. . C k D. . C k C k n k! n k ! n k! n n k ! n n! Câu 13. Cho cấp số cộng un có số hạng đầu u1 2 và công sai d 5 . Giá trị u4 bằng A. 22. B. 17. C. 12. D. 250. Câu 14. Điểm nào trong hình vẽ bên là điểm biểu diễn của số phức z 1 2i?
  3. A. .N B. . P C. . M D. . Q Câu 15. Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây? 2x 1 x 1 A. . y B. . yC. . D. . y x4 x2 1 y x3 3x 1 x 1 x 1 Câu 16. Cho hàm số f x liên tục trên đoạn  1;3 và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên  1;3 . Giá trị của M m bằng ? A. .0 B. . 1 C. .D 4 5 Câu 17. Cho hàm số y f (x) có đạo hàm f (x) x(x 1)(x 2)3 , x ¡ . Số điểm cực trị của hàm số đã cho là A. .3 B. . 2 C. . 5 D. . 1 Câu 18. Tìm hai số thực a và b thỏa mãn 2a b i i 1 2i với i là đơn vị ảo. 1 A. a 0 , b 2 . B. a , b 1 . C. a 0 , b 1 . D. a 1, b 2 . 2
  4. Câu 19. Trong không gian Oxyz , cho hai điểm I 1;1;1 và A 1;2;3 . Phương trình của mặt cầu có tâm .I . và đi qua A là A. x 1 2 y 1 2 z 1 2 29 . B. . x 1 2 y 1 2 z 1 2 5 C. . D.x 1 2 y 1 2 z 1 2 25 . x 12 y 12 z 1 2 5 Câu 20. Đặt log3 2 a , khi đó log16 27 bằng 3a 3 4 4a A. . B. . C. . D. . 4 4a 3a 3 2 Câu 21. Kí hiệu z1, z2 là hai nghiệm phức của phương trình z 3z 5 0 . Giá trị của z1 z2 bằng A 2B. 5 .C. .D. . 5 3 10 Câu 22. Trong không gian Oxyz , khoảng cách giữa hai mặt phẳng (P): x + 2y + 2z - 10 = 0 và (Q): x + 2y + 2z - 3 = 0 bằng 8 7 4 A. . B. . C. . 3 D. . 3 3 3 2 Câu 23. Tập nghiệm của bất phương trình 3x 2x 27 là A. .( ; 1) B. . (3; C. ) . D ( 1;3) ( ; 1)  (3; ) Câu 24. Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây? 2 2 A. . 2x2 2x 4 dx B. . 2x 2 dx 1 1 2 2 C. . 2x 2 dx D. 2x2 2x 4 dx . 1 1 Câu 25. Cho khối nón có độ dài đường sinh bằng 2a và bán kính đáy bằng a . Thể tích của khối nón đã cho bằng 3 a3 3 a3 2 a3 a3 A. . B. . C. . D. . 3 2 3 3
  5. Câu 26. Cho hàm số y f x có bảng biến thiên như sau Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là A 4 B. . 1 C. . 3 D. . 2 Câu 27. Cho khối chóp tứ giác đều có tất cả các cạnh bằng 2a . Thể tích của khối chóp đã cho bằng 4 2a3 8a3 8 2a3 2 2a3 A. .B. . C. . D. . 3 3 3 3 2 Câu 28. Hàm số f x log2 x 2x có đạo hàm ln 2 1 A. . f x B. f x . x2 2x x2 2x ln 2 2x 2 ln 2 2x 2 C. f x . D. .f x x2 2x x2 2x ln 2 Câu 29. Cho hàm số y f x có bảng biến thiên như sau: Số nghiệm thực của phương trình 2 f x 3 0 A. .4 B. . 3 C. . 2 D. . 1 Câu 30. Cho hình lập phương ABCD.A B C D . Góc giữa A B CD và ABC D bằng. A. 30 . B. .6 0 C. . 45 D. . 90 x Câu 31. Tổng tất cả các nghiệm của phương trình log3 7 3 2 x bằng A. .2 B. . 1 C. . 7 D. . 3
  6. Câu 32. Một khối đồ chơi gồm hai khối trụ H1 , H2 xếp chồng lên nhau, lần lượt có bán kính đáy và 1 chiều cao tương ứng là r ,h ,r ,h thỏa mãn r r ,h 2h (tham khảo hình vẽ bên). Biết 1 1 2 2 2 2 1 2 1 3 rằng thể tích của toàn bộ khối đồ chơi bằng 30 cm , thể tích khối trụ H1 bằng A. .2 4cm3 B. . 15cm3C. . 20cm3D. . 10cm3 Câu 33. Họ nguyên hàm của hàm số f x 4x 1 ln x là A. .2 x2 ln x B. 3 .x 2 C. . D.2x 2. ln x x2 2x2 ln x 3x2 C 2x2 ln x x2 C Câu 34. Cho hình chóp S.ABCD có đáy là hình thoi cạnh a , B· AD 60 , SA a và SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng SCD bằng 21a 15a 21a 15a A. . B. . C. . D. . 7 7 3 3 Câu 35. Trong không gian Oxyz , cho mặt phẳng P : x y z 3 0 và đường thẳng x y 1 z 2 d : . Hình chiếu vuông góc của d trên P có phương trình là. 1 2 1 x 1 y 1 z 1 x 1 y 1 z 1 A. . B. . 1 4 5 3 2 1 x 1 y 1 z 1 x 1 y 4 z 5 C. . D. . 1 4 5 1 1 1 Câu 36. Tập hợp tât cả các giá trị của tham số m để hàm số : y x3 6x2 4m 9 x 4 nghịch biến trên khoảng ( ; 1) là: 3 3 A. ;0 . B. . ; C. . D. . ; 0; 4 4 Câu 37. Xét các số phức z thỏa mãn z 2i z 2 là số thuần ảo. Biết rằng tập hợp các điểm biểu diễn số phức z là một đường tròn, tâm của đường tròn đó có tọa độ là A. . B.1;. 1 C. . 1;1 D. . 1;1 1; 1
  7. 1 xdx Câu 38. Cho a bln 2 c ln 3 với a , b , c là các số hữu tỷ. Giá trị của 3a b c bằng 2 0 x 2 A B.2.C D 1 2 1 Câu 39. Cho hàm số y f x . Hàm số y f x có bảng biến thiên như sau Bất phương trình f x ex m đúng với mọi x 1;1 khi và chỉ khi 1 1 A. m f 1 e. B. m f 1 . C. m f 1 . D. m f 1 e. e e Câu 40. Có hai dãy ghế đối diện nhau, mỗi dãy có ba ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng 2 1 3 1 A. . B. . C. . D. . 5 20 5 10 Câu 41. Trong không gian Oxyz , cho hai điểm A 2; 2;4 , B 3;3; 1 và mặt phẳng P : 2x y 2z 8 0 . Xét M là điểm thay đổi thuộc P , giá trị nhỏ nhất của 2MA2 3MB2 bằng: A. .1 35 B. . 105 C. . 108 D. . 145 2 Câu 42. Có bao nhiêu số phức z thỏa mãn z 2 z z 4 và z 1 i z 3 3i ? A. 4. B. 3. C. 1. D. 2. Câu 43. Cho hàm số y f x liên tục trên ¡ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f sin x m có nghiệm thuộc khoảng 0, :
  8. A.  1;3 .B. .C. 1 .D.;1 . 1;3  1;1 Câu 44. Ông A vay ngân hàng 100 triệu đồng với lãi suất 1% / tháng. Ông ta muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng 5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây? A. 2triệu,22 đồng. B. triệu 3đồng.,03 C. triệu đồng.2 ,25D. triệu đồng. 2,20 Câu 45. Trong không gian Oxyz, cho điểm E 2;1;3 , mặt phẳng P : 2x 2y z 3 0 và mặt cầu S : x 3 2 y 2 2 z 5 2 36. Gọi là đường thẳng đi qua E, nằm trong mặt phẳng P và cắt S tại hai điểm có khoảng cách nhỏ nhất. Phương trình của là x 2 9t x 2 5t x 2 t x 2 4t A. y 1 9t. B. y 1 3t. C. y 1 t. D. y 1 3t. z 3 8t z 3 z 3 z 3 3t Câu 46. Một biển quảng cáo có dạng hình elip với bốn đỉnh A1 , A2 , B1 , B2 như hình vẽ bên. Biết chi phí phần tô đậm là 200 000 đồng/ m 2 và phần còn lại là 100 000 đồng/ m 2. Hỏi số tiền để sơn theo cách trên gần nhất với số tiền nào dưới đây, biết A1 A2 8m , B1B2 6m và tứ giác MNPQ là hình chữ nhật có MQ 3m ? A. 7 322 000 đồng. B. 7 213 000 đồng. C. 5 526 000 đồng. D. 5 782 000 đồng. Câu 47. Cho khối lăng trụ ABC.A B C có thể tích bằng 1 . Gọi M , N lần lượt là trung điểm của các đoạn thẳng AA và BB . Đường thẳng CM cắt đường thẳng C A tại P , đường thẳng CN cắt đường thẳng C B tại Q . Thể tích của khối đa diện lồi A MPB NQ bằng 1 1 2 A. .1 B. . C. . D. . 3 2 3 Câu 48. Cho hàm số f x có bảng xét dấu của đạo hàm như sau
  9. Hàm số y 3 f x 2 x3 3x đồng biến trên khoảng nào dưới đây? A. . 1; B. . C.; 1. D. . 1;0 0;2 Câu 49. Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m2 x4 1 m x2 1 6 x 1 0 đúng với mọi x ¡ . Tổng giá trị của tất cả các phần tử thuộc S bằng. 3 1 1 A. . B. .1 C. . D. . 2 2 2 Câu 50. Cho hàm số f x mx4 nx3 px2 qx r m,n, p,q,r ¡ . Hàm số y f x có đồ thị như hình vẽ bên dưới Tập nghiệm của phương trình f x r có số phần tử A. B.4. C. D. 3. 1. 2.