Đề khảo sát tháng 4 môn Toán Lớp 12 - Mã đề 2 - Trường THPT Thanh Miên 2

doc 7 trang thungat 1850
Bạn đang xem tài liệu "Đề khảo sát tháng 4 môn Toán Lớp 12 - Mã đề 2 - Trường THPT Thanh Miên 2", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_khao_sat_thang_4_mon_toan_lop_12_ma_de_2_truong_thpt_than.doc

Nội dung text: Đề khảo sát tháng 4 môn Toán Lớp 12 - Mã đề 2 - Trường THPT Thanh Miên 2

  1. SỞ GIÁO DỤC & ĐÀO TẠO HẢI DƯƠNG ĐỀ KHẢO SÁT THÁNG 4 NĂM 2018 TRƯỜNG THPT THANH MIỆN 2 MÔN TOÁN. LỚP 12 KHTN MÃ ĐỀ 2 Thời gian làm bài 90 phút Câu 1 : Cho hàm số y x3 3x2 1 . Phương trình tiếp tuyến tại điểm A 3;1 . A. 9x y 28 0 B. y 9x 20 C. 9x y 28 0 D. y 9x 20 Câu 2 : 2 Nếu Ax 132 thì x bằng: A. x 11 B. x 0 C. x 11 và x 10 D. x 12 Câu 3 : Trong htđ Oxyz, cho điểm M 0; 1; 2 , N 1; 1; 3 . Gọi P là mặt phẳng đi qua M , N và tạo với mặt phẳng Q :2x y 2z 2 0 góc có số đo nhỏ nhất. Điểm A 1;2;3 cách mp P một khoảng là: 5 3 4 3 7 3 A. 3. B. . C. . D. . 3 3 11 Câu 4 : Cho giới hạn lim ( x2 bx 1 x) 2 khi đó b nhận giá trị : x A. 4 B. -4 C. 2 D. 3 Câu 5 : Cho tứ diện ABCD. Gọi M , N lần lượt là trung điểm của AB, AC; E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là: A. Hình thang MNEF với F là điểm trên cạnh BD mà EF P BC. B. Tam giác MNE. C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF P BC. D. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. Câu 6 : 1 1 Cho f x là hàm liên tục trên R thỏa f 1 1 và f t dt , tính 0 3 2 I sin 2x. f sin x dx . 0 1 2 4 2 A. I B. I C. I D. I 3 3 3 3 Câu 7 : Tìm tất cả các giá trị thực của tham số m để hàm số y x3 3x2 3mx 2 nghịch biến trên khoảng ;0 . A. m 1 B. m 3 C. m 3 D. m 1 Câu 8 : Tứ diện SABC có SA, SB , SC đôi một vuông góc, SA = SB = 2a, SC = 4a, thể tích khối MÃ ĐỀ 2 Trang 1/7
  2. cầu ngoại tiếp tứ diện SABC là: A. 24 a3 6 B. 8 a3 6 C. 16 a3 6 D. 32 a3 6 Câu 9 : 3 2 Cho hàm số y x 2(m 1)x (5m 2)x 2m 4 (1) , A( 2;0) . Gọi (Cm ) là đồ thị của hàm số (1) .Tìm m để (Cm ) cắt trục hoành tại ba điểm phân biệt A,B,C sao choBC có độ dài nhỏ nhất. 1 1 3 A. m B. m C. m D. m 1 2 2 2 Câu 10 : Một hình trụ có diện tích xung quanh bằng S, diện tích đáy bằng diện tích một mật cầu bán kính a. Khi đó, thể tích của hình trụ bằng: 1 1 1 A. Sa B. Sa C. Sa D. Sa 3 2 4 Câu 11 : 2 1 Cho hàm số f x liên tục trên ¡ và f 2 16, f x dx 4 . Tính I x. f 2x dx . 0 0 A. 12 B. 13 C. 20 D. 7 Câu 12 : Cho hình chóp S.ABCD có A 1;0;0 , B 1;1; 2 ,C 2;0 3 , D 0; 1; 1 .Gọi H là trung điểm CD , SH  ABCD . Biết khối chóp có thể tích bằng 4. Kí hiệu tọa độ của điểm S là S x0; y0; z0 , x0 0 .Tìm x0 A. x0 2 B. x0 3 C. x0 4 D. x0 1 Câu 13 : Tìm m để C : x2 y2 4x 2my 1 0 là ảnh của đường tròn C ' : x 1 2 y 3 2 9 qua phép tịnh tiến theo vectơ v 3;5 . A. m 2 B. m 2 C. m 3 D. m 3 Câu 14 : Một khúc gỗ hình trụ có bán kính R bị cắt bởi một mặt phẳng không song song với đáy ta được thiết diện là một hình elip. Khoảng cách từ điểm A đến mặt đáy là 12 cm , khoảng cách từ điểm B đến mặt đáy là 20 cm. Đặt khúc gỗ đó vào trong hình hộp chữ nhật có chiều cao bằng 20 cm chứa đầy nước sao cho đường tròn đáy của khúc gỗ tiếp xúc với các cạnh đáy của hình hộp chữ nhật. Sau đó, người ta đo lượng nước còn lại trong hình hộp chữ nhật là 2 lít. Tính bán kính của khúc gỗ (giả sử khúc gỗ không thấm nước và kết quả làm tròn đến phần hàng chục). MÃ ĐỀ 2 Trang 2/7
  3. A. R = 4,8 cm. B. R = 5,2 cm. C. R = 6,4 cm. D. R = 8,2 cm. Câu 15 : Cho f x , g(x) là hai hàm số liên tục trên ¡ . Chọn mệnh đề sai trong các mệnh đề sau: b b b a A. f (x) g(x) dx f (x)dx g(x)dx. B. f (x)dx 0. a a a a b b b b b C. f (x)g(x) dx f (x)dx g(x)dx. D. f (x)dx f (y)dy a a a a a Câu 16 : Trong không gian Oxyz , góc giữa hai mặt phẳng P :8x 4y 8z 11 0 ; Q : 2x 2y 7 0 . A. B. C. D. 2 4 6 3 Câu 17 : m x x x 12 m.log 3 Tất cả các giá trị thực của để bất phương trình 5 4 x có nghiệm là A. 2 m 12log2 5 B. m 2 3 C. m 12log3 5 D. m 2 3 Câu 18 : Cho hàm số y f (x) liên tục và có đạo cấp 1, cấp 2, đồ thị các hàm số y f (x), y f ' (x), y f '' (x) lần lượt là các đồ thị hàm số hàm số 4 2 -5 A 5 y=r(x) -2 y=h(x) y=q(x) -4 A. h(x) ,q(x), r(x) B. r(x), h(x), q(x) C. q(x), h(x), r(x) D. q(x), r(x), h(x) 2 Câu 19 : Kí hiệu z0 là nghiệm phức có phần ảo dương của phương trình 4z 16z 17 0 . Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w iz0 ? MÃ ĐỀ 2 Trang 3/7
  4. 1 1 1 1 A. M 3 ;1 B. M1 ;2 C. M 2 ;2 D. M 4 ;1 4 2 2 4 Câu 20 : Trong htđ Oxyz cho hai mặt phẳng P : x y z 1 0 và Q : x y z 5 0. Có bao nhiêu điểm M trên trục Oy thỏa mãn M cách đều hai mặt phẳng P và Q ? A. 0 B. 2 C. 3 D. 1 2 Câu 21 : Biết phương trình z +az+b = 0 , a, b ¡ có một nghiệm phức là z0 1 2i . Tìm a, b a 2 a 5 a 2 a 5 A. B. . C. . D. . b 5 b 2 b 5 b 2 Câu 22 : Trong kỳ thi THPT Quốc gia năm 2018, mỗi phòng thi gồm 24 thí sinh xếp vào 24 chiếc bàn khác nhau. Bạn An là một thí sinh dự thi bốn môn ( Toán, Văn, Ngoại Ngữ, Ban khoa học tự nhiên) cả bốn lân thi đều thi tại một phòng thi duy nhất. Giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên. Tính xác suất để trong 4 lần thi thì An có đúng hai lần ngồi cùng một ví trí . 253 899 23 253 A. . B. . C. . D. . 6912 1152 2304 1152 Câu 23 : Nếu lim un L thì lim un 9 có giá trị là bao nhiêu? A. L 3 B. L 9 C. L 9 D. L 3 Câu 24 : 5 Cho sin a cosa . Khi đó sin a.cosa có giá trị bằng: 4 5 9 3 A. B. C. 1 D. 4 32 16 Câu 25 : 1 Cho hàm số y x3 2x2 3x 5 . Phương trình tuyến của đồ thị hàm số có hệ số góc nhỏ 3 19 17 23 nhất là: A. y 5 B. y C. y x D. y x 3 3 3 Câu 26 : Cho hàm số y x3 3x 2 C . Có hai điểm M thuộc C , sao cho tiếp tuyến của C tại M cắt C tại điểm thứ hai là N và MN 6 5 . Khi đó tổng tung độ của hai điểm N bằng : A. 4 B. 20 2 C. 20 2 D. 0 Câu 27 : Trong htđ Oxyz, cho 3 điểm A 1;2;3 ; B 0;1;1 ;C 1;0; 2 Điểm M a,b,c (P) P :x y z 2 0 sao cho giá trị của biểu thức T MA2 2MB2 3MC2 nhỏ nhất. Khi đó, giá trị của biểu thức a b c là: A. -3 B. -2 C.2 D.3 Câu 28 : Trong htđ Oxyz , cho A 3;1;2 , B 3; 1;0 và mặt phẳng P : x y 3z 14 0 . Điểm M a,b,c thuộc mặt phẳng P sao cho MAB vuông tại M . Tính giá trị a b 2c . MÃ ĐỀ 2 Trang 4/7
  5. A. 10 B. 12 C. 5 D. 11 Câu 29 : n 1 n * Cho khai triển 1 2x a0 a1x an x , trong đó n ¥ các hệ số thỏa mãn hệ thức a a a 1 n 4096 . Tìm hệ số lớn nhất. 0 2 2n A. 126720 B. 101376 C. 112640 D. 67584 Câu 30 : Hàm số nào sau đây nghịch biến trên khoảng 0; ? 2 A. y cos x B. y cot x C. y sin x D. y tan x Câu 31 : Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a . Tính cosin của góc giữa hai mặt bên liền kề nhau. 5 1 1 1 A. B. C. D. 3 2 3 2 Câu 32 : Cho hàm số y sin 2 x2 . Đạo hàm y của hàm số là: 2x 2 x A. cos 2 x2 . B. cos 2 x2 . 2 x2 2 x2 x (x 1) C. cos 2 x2 . D. cos 2 x2 . 2 x2 2 x2 x x 1 Câu 33 : Với giá trị nào của tham số m thì phương trình 4 m.2 2m 0 có hai nghiệm x1, x2 thoả mãn x1 x2 3 ? A. m 4 B. m 2 C. m 1 D. m 3 Câu 34 : x 2 t x 2 y 1 z Trong htđ Oxyz mặt phẳng song song với hai đt 1 : ; 2 : y 3 2t có 2 3 4 z 1 t một vec tơ pháp tuyến là: A. n ( 5;6; 7) B. n (5; 6;7) C. n ( 5; 6;7) D. n ( 5;6;7) Câu 35 : Cho hàm số f (x) 0 liên tục và có đạo hàm trên 0;1 thỏa mãn x 1 1 2018 f (t)dt f 2 x . Tính f x dx 0 0 2013 1011 1017 2015 A. B. C. D. 2 2 2 2 Câu 36 : Cho khối lăng trụ đứng tam giác ABC.A’B’C’ có đáy là một tam giác vuông tại A. Cho AC = AB = 2a, góc giữa AC’ và mặt phẳng (ABC) bằng 300. Tính thể tích khối lăng trụ ABC.A’B’C’: MÃ ĐỀ 2 Trang 5/7
  6. a3 3 2a3 3 4a3 3 a3 3 A. B. C. D. 3 3 3 3 Câu 37 : Cho hai số phức z1, z2 thỏa mãn z1 5 5, z2 1 3i z2 3 6i . Tìm giá trị nhỏ nhất của 5 2 3 5 2 z z . A. B. C. D. 1 2 2 2 2 2 Câu 38 : Hàm số nào sau đây đồng biến trên khoảng ( ; ) ? x 1 x 1 A. y B. y x3 x C. y D. y x3 3x x 2 x 3 Câu 39 : Cho hình chóp S.ABCD có đáy là hình thoi tâm O cạnh a và có góc B· AD 600 . Đường 3a thẳng SO vuông góc với mặt phẳng đáy ABCD và SO . Khoảng cách từ A đến mặt 4 3a a 3 3a 2 2 3a phẳng SBC là: A. B. C. D. 4 2 2 3 Câu 40 : Tìm giá trị nhỏ nhất m của hàm số y x4 x2 13 trên đoạn  2;3. 51 49 51 A. m . B. m 13. C. m . D. m . 2 4 4 Câu 41 : Bất phương trình: 32x + 1 – 7.3x + 2 > 0 có nghiệm là: x 1 x 2 x 2 x 1 A. B. C. D. x log2 3 x log3 2 x log2 3 x log3 2 Câu 42 : x 1 Đường thẳng d : y x a luôn cắt đồ thị hàm số y H tại hai điểm phân biệt 2x 1 A, B . Gọi k1,k2 lần lượt là hệ số góc của các tiếp tuyến với H tại A và B . Tìm a để tổng k1 k2 đạt giá trị lớn nhất. A. a=1 B. a=-5 C. a=2 D.a=-1 Câu 43 : Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng. A. 8;13;18 B. 6;12;18 C. 6; 10;14 D. 7; 12; 17 Câu 44 : Một hình nón có bán kính đáy là 5a, độ dài đường sinh là 13a thì đường cao h của hình nón là? A. 8a. B. 7a 6 C. 17a. D. 12a. Câu 45 : Một nhóm học sinh gồm 5 nữ, 5 nam. Hỏi có bao nhiêu cách xếp 10 bạn thành một hàng dọc sao cho các bạn cùng phái thì đứng cạnh nhau? A. 28800 B. 14400 C. 43200 D. 86400 Câu 46 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác cân nằm trong mặt phẳng vuông góc với đáy, A· SB 1200 . Tính thể tích mặt cầu (S) ngoại tiếp hình chóp. MÃ ĐỀ 2 Trang 6/7
  7. 4 21a3 21 A. Kết quả khác. B. 28a3 21 C. D. a3 3 3 Câu 47 : b Cho hàm số f x có đạo hàm f x liên tục trên a;b , f b 5 và f x dx 3 5 . a Tính f a . A. f a 3 5 3 B. f a 3 5 C. f a 5 3 5 D. f a 5 5 3 Câu 48 : Cho khối chóp S. ABC có đáy ABC là tam giác vuông cân tại B, độ dài cạnh AB = BC = a, cạnh bên SA vuông góc với đáy và SA = 2a. Tính thể tích V của khối chóp S.ABC. a3 a3 a3 A. V= B. V= C. V=a3 D. V= 2 6 3    Câu 49 : Cho hình lăng trụ ABC.A B C , M là trung điểm của BB . Đặt CA a ,CB b , AA' c . Khẳng định nào sau đây đúng?  1  1 AM b a c  1  1 A. AM a c b B. 2 C. AM a c b D. AM b c a 2 2 2 3 Câu 50 : Cho hàm số y x mx 2 có đồ thị (Cm). Tìm m để đồ thị (Cm) cắt trục hoành tại một điểm duy nhất. A. m 3 B. m 3 C. m 3 D. m 3 Hết MÃ ĐỀ 2 Trang 7/7