Đề kiểm tra chương III môn Hình học Lớp 12 - Mã đề 132 - Trường THPT Nguyễn Du

doc 3 trang thungat 1620
Bạn đang xem tài liệu "Đề kiểm tra chương III môn Hình học Lớp 12 - Mã đề 132 - Trường THPT Nguyễn Du", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_kiem_tra_chuong_iii_mon_hinh_hoc_lop_12_ma_de_132_truong.doc
  • xlsC3HH12_C3HH12_dapancacmade.xls
  • xlsC3HH12_C3HH12_dapandechuan.xls
  • xlsC3HH12_C3HH12_dethi.xls
  • xlsC3HH12_C3HH12_tronde.xls

Nội dung text: Đề kiểm tra chương III môn Hình học Lớp 12 - Mã đề 132 - Trường THPT Nguyễn Du

  1. TRƯỜNG THPT NGUYỄN DU Kiểm tra giữa chương III hình học 12 TỔ TOÁN Thời gian làm bài: 45 phút; (25 câu trắc nghiệm) Mã đề thi 132 Họ, tên thí sinh: lớp: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A O O O O O O O O O O O O O O O O O O O O O O O O O B O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O D O O O O O O O O O O O O O O O O O O O O O O O O O Câu 1: Trong không gian Oxyz, cho hai mp(α): (m 1)x 2y z 1 0 và mp(β): 2x y mz 6 0 vuông góc với nhau. Tìm số m . A. .m 3 B. . m 1 C. . mD. 4. m 2 Câu 2: Trong không gian Oxyz, cho hai mp(α): (m 1)x 2y 2z 1 0 và mp(β): 2x y nz 6 0 song song với nhau. Tính tích m.n . A. .m .n 4 B. . mC n . 2 D. . m.n 5 m.n 3 Câu 3: Trong không gian Oxyz, cho mp(α) có phương trình x 4z 2 0 . Phương trình nào dưới đây là phương trình của mặt phẳng vuông góc với (α). A. .x 4z 0B. . C. . 2x D.y .1 0 2x y z 0 3y 1 0 Câu 4: Trong không gian Oxyz, cho mặt cầu (S): x2 y2 z2 6x 2y 9 0 và mặt phẳng (α): 2x my z 5 0 . Gọi T là tập hợp các số nguyên dương m để (α) và (S) có điểm chung. Số phần tử của T là A. .2 B. . 1 C. . 3 D. . 4 Câu 5: Trong không gian Oxyz, cho hai mp(α): x y z 2 0 và mp(β): x y z 1 0 . Khoảng cách giữa hai mặt phẳng (α) và (β) bằng 3 A. .3 B. . C. . 3 D. . 1 3  Câu 6: Trong không gian Oxyz, cho vectơ OM 2 j k . Tọa độ của điểm M là A. . 2;0; 1 B. . 0C.;2 ;. 1 D. . 2; 1;0 0;2;1 Câu 7: Trong không gian Oxyz, cho hai vectơ a 2m 1;0;3 và b 6;n 3;2 cùng phương. Giá trị của m n bằng A. .7 B. . 5 C. . 1 D. . 12 Câu 8: Trong không gian Oxyz, cho ba điểm A 2;0;0 , B 0;0;7 ,C 0;3;0 . Phương trình mặt phẳng (ABC) là x y z x y z x y z x y z A. . B. . 1C. . D. . 1 1 0 0 2 7 3 2 3 7 2 3 7 2 3 7 Câu 9: Trong không gian Oxyz, cho mặt cầu có phương trình x2 y2 z2 2x 10y 4z 6 0 . Bán kính của mặt cầu bằng A. .2 6 B. . 3 6 C. . 6 D. . 5 Câu 10: Trong không gian Oxyz, cho hai điểm I 2;1; 3 và M 0;1;1 Mặt cầu nhận I làm tâm và đi qua điểm M có phương trình là 2 2 2 2 2 2 A. . x 2 B. y. 1 z 3 2 5 x 2 y 1 z 3 20 Trang 1/3 - Mã đề thi 132
  2. 2 2 2 2 2 2 C. . x 2 D. .y 1 z 3 2 5 x 2 y 1 z 3 20 2 2 2 Câu 11: Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) : (x 1) (y 2) (z 3) 16 và các điểm A(1;0;2) ; B( 1;2;2) . Gọi (P) là mặt phẳng đi qua hai điểm A; B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax by cz 3 0 .Tính T a b c : A. - 2. B. 0. C. 3. D. - 3. Câu 12: Trong không gian Oxyz, cho mp(α) có phương trình x 2y 5 0 và hai điểm A 0;3; 1 , B 2;4;0 . Mặt phẳng chứa AB và vuông góc với (α) có phương trình là A. .7 x 11y 3z 30 0B. . 2x y 3z 0 C. .2 x y 3z 6 0 D. . 7x 11y 3z 30 0 Câu 13: Trong không gian Oxyz, cho điểm M 3; 2;0 . Mặt phẳng (α) chứa trục Oz và đi qua M có phương trình là A. .3 x 2y B.0 . C. . 2x 3y D. 0 . 3x 2y 0 2x 3y 0 Câu 14: Trong không gian Oxyz, cho mp(α) có phương trình x 2y 5 0 và điểm M 2;3;2 . Mặt phẳng đi qua M và song song với (α) có phương trình là A. .x 2yB. .8 0 C. . xD. 2. z 2 0 x 2z 8 0 x 2y 2 0 Câu 15: Trong không gian Oxyz, cho mặt cầu (S): x2 y2 z2 2x 10y 4z 6 0 . Hai mặt phẳng song song với mp(Oxz) và tiếp xúc với mặt cầu (S) có phương trình là A. .y 1 0  y 11 0 B. . y 1 0  y 11 0 C. .y 1 0  y 11 0 D. . y 1 0  y 11 0 Câu 16: Trong không gian Oxyz, cho điểm M 3; 2;5 . Khoảng cách từ điểm M đến mặt phẳng (Oyz) bằng A. .3 B. . 38 C. . 5 D. . 2 Câu 17: Trong không gian Oxyz, cho điểm M 1; 1;0 và mp(α): 2x 2y z 3 0 . Khoảng cách từ điểm M đến mặt phẳng (α) bằng 3 7 1 A. . B. . C. . 1 D. . 7 3 3 Câu 18: Trong không gian Oxyz, cho hai vectơ a 4; 1;1 và b 2;3;0 . Tính tích có hướng của hai vectơ a và b . A. . a,b 3; 2;14 B. . a,b 3;2;14 C. . a,b 3; 2; 14 D. . a,b 3;2;14 Câu 19: Trong không gian Oxyz, cho vectơ a 4; 1;1 . Độ dài của vectơ a bằng A. .4 B. . 2 2 C. . 3 2 D. . 2 3 Câu 20: Trong không gian Oxyz, cho mp(α) có phương trình x 4z 2 0 . Một vectơ pháp tuyến của (α) có tọa độ là A. . 1;4;2 B. . 1; C.4; 0. D. . 1; 4;2 1;0; 4 Câu 21: Trong không gian Oxyz, cho mp(α) có phương trình 2x 6y 4z 1 0 . Phương trình nào dưới đây là của mặt phẳng song song với (α). A. .3 x 9y 6z 5 0 B. . 3x 9y 6z 1,5 0 C. .x 3y 2z 1 0 D. . 2x 6y 4z 1 0 Trang 2/3 - Mã đề thi 132
  3. Câu 22: Trong không gian Oxyz, cho ba điểm A 0;3; 1 , B 2;4;0 ,C 0;1;0 . Mặt phẳng (ABC) có phương trình là A. .3 x 2y 4z 2 0 B. . 3x 2y 4z 2 0 C. .3 x 2y 4z 2 0 D. . 3x 2y 4z 2 0 Câu 23: Cho hai điểm A(5; 3;2), B( 1;3;2) . Độ dài đoạn thẳng AB là A. 6 2. B. 4 2. C. 2. D. 4. Câu 24: Trong không gian Oxyz, cho hai vectơ a 4; 1;1 và b 2;3;0 . Tích vô hướng của hai vectơ a và b bằng A. .5 B. . 6 C. . 4 D. . 11 2 2 Câu 25: Trong không gian Oxyz, cho mặt cầu có phương trình x 3 y 4 z2 20 . Tâm của mặt cầu có tọa độ là A. . 3;4;0 B. . C.3;4 .; 1 D. . 3; 4;1 3; 4;0 HẾT Trang 3/3 - Mã đề thi 132