Đề kiểm tra học kỳ II môn Toán Lớp 11 - Đề số 5
Bạn đang xem tài liệu "Đề kiểm tra học kỳ II môn Toán Lớp 11 - Đề số 5", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_kiem_tra_hoc_ky_ii_mon_toan_lop_11_de_so_5.doc
Nội dung text: Đề kiểm tra học kỳ II môn Toán Lớp 11 - Đề số 5
- Đề kiểm tra HK II số 5 I.Phần trắc nghiệm (25 câu – 5điểm) Câu 1. Tìm cơng bội của cấp số nhân (un). Biết u3 = 9, u6 = 243 A. q = - 3B. q = - 2C. q = 3D. q = 4 ax 3 neu x 1 Câu 2 cho hàm số: f (x) 2 để f(x) liên tục trên tồn trục số thì a bằng? x x 1 neu x 1 A. -2 B. -1 C. 0 D. 1 2n2 1 Câu 3. Giới hạn của dãy số sau đây bằng bao nhiêu: lim n3 3n 3 1 A. B. 2 C. 0 D. 3 x 1 x2 x 1 Câu 4. Giới hạn của hàm số sau đây bằng bao nhiêu: lim x 0 x A. 0 B. 1 C. D. 2 (a 2)x2 4(a 2)x 5 Câu 5. Nếu lim 2 thì giá trị của a bằng: x 2x2 4x 1 A. – 2 B. 3 C. 2 D. a 2 Câu 6. Cho hàm số f(x) là hàm số trên R định bởi f(x) = x và x0 R. Chọn câu đúng: / / 2 / / A. f (x0) = x0 B. f (x0) = x0 C. f (x0) = 2x0 D. f (x0) khơng tồn tại 1 Câu 7. Cho hàm số f(x) xác định trên 0; bởi f(x) = . Đạo hàm của f(x) tại x0 = 2 là: x 1 1 1 1 A. B- C. D. - 2 2 2 2 ax b Câu 8 Cho hàm số y = cĩ đồ thị cắt trục tung tại A(0; -1), tiếp tuyến tại A cĩ hệ số gĩc k = -3. x 1 Các giá trị của a, b là: A. a = 1; b=1B. a = 2; b=1 C. a = 1; b=2 D. a = 2; b=2 Câu 1. Câu 9 Cho đường cong (C): y = x2. Phương trình tiếp tuyến của (C) tại điểm M(-1; 1) là: A. y = -2x + 1 B. y = 2x + 1 C. y = -2x - 1 D. y = 2x - 1 Câu 10. Tiếp tuyến với đồ thị hàm số f (x) x2 tại điểm cĩ tung độ bằng 4 cĩ PT là : A. y 4x 4; y 4x 4 B. Cy. D4. x 4; y 4x 4 y 4x 2; y 4x 2 y 4x+4; y 4x 4 Câu 11. §¹o hµm cÊp 2 cđa hµm sè y = sinx lµ: A. y” = - cosx B. y” = - sinx C. y” = -sin2x; D. y” = -cos2x. Câu 2. Câu 12. Cho hàm số f(x) xác định trên R bởi f(x) = -2x2 + 3x. Hàm số cĩ đạo hàm f/(x) bằng: A. -4x - 3B. -4x +3 C. 4x + 3 D. 4x - 3 Câu 13. Một chất điểm chuyển động cĩ phương trình s t3 3t 2(t tính bằng giây, s tính bằng mét) Tính vận tốc của chất điểm tại thời điểm t0 2 (giây) ? A. 0 B. 2m / s C. 4m / s D. 4m / s 5 *Câu 14. Tìm m để tiếp tuyến của đồ thị hàm số y = (2m – 1)x 4 – m + tại điểm cĩ hồnh độ x = -1 4 vuơng gĩc với đường thẳng 2x – y – 3 = 0 2 1 1 5 A. B. C. D. 3 6 6 6
- Câu 3. Câu 15. Hàm số y = tanx - cotx cĩ đạo hàm là: 1 4 4 1 A. y/ = B. y / = C. y/ = D. ) y/ = cos2 2x sin2 2x cos2 2x sin2 2x Câu 16. : : Cho hình chĩp SABCD cĩ ABCD là hình bình hành tâm O. Trong các mệnh đề sau, mệnh đề nào sai? A. SA SB SC SD B. OA OB OC OD 0 C. SA SC SB SD D. SA SC 2SO Câu 17 Câu 7: Cho hình chĩp SABC cĩ đáy ABC là tam giác cân tại A, cạnh bên SA vuơng gĩc với đáy, M là trung điểm BC, J là trung điểm BM. Khẳng định nào sau đây đúng ? A. BC (SAM) B. BC (SAB) C. BC (SAC) D. BC (SAJ) Câu 18. Qua điểm O cho trước, đường thẳng vuơng gĩc với mặt phẳng (P) cho trước? A. 1. B. Vơ số. C. 3 . D. 2 . Câu 19. Cho hình lập phương ABCDA’B’C’D’, gĩc giữa hai đường thẳng AC và A’B’ là: A. 450 B. 00 C. 900 D. 300 Câu 20. Cho tứ diện ABCD . Gọi M , N lần lượt là trung điểm các cạnh BC và AD . Cho biết AB CD 2a và MN a 3 . Tính gĩc giữa hai đường thẳng AB và CD . A. B. ·A C.B, CD 300 ·AB,CD 450 ·AB,CD 600 D. ·AB,CD 900 Câu 21. Cho hình chĩp S.ABC cĩ đáy ABC là tam giác cân tại C, (SAB) (ABC) , SA = SB , I là trung điểm AB. Khẳng định nào sau đây sai ? A. SI (ABC) B. IC (SAB) C. AB (SIC) D. SA (ABC) Câu 22. Cho hình chĩp S.ABCD cĩ SA (ABCD) và đáy là hình thoi tâm O. Gĩc giữa đường thẳng SB và mặt phẳng (SAC) là gĩc giữa cặp đường thẳng nào: A. SB,SA B. SB, AB C. SB,SO D. SB,SA Câu 23 Cho hình chĩp tam giác S.ABC cĩ đáy ABC là tam giác vuơng tại B, SA (ABC). Biết SA 3a và gĩc giữa cạnh bên SB với mặt đáy (ABC) bằng 600. Khi đĩ, khoảng cách giữa SA và BC là : a A. a 3 B. C.3a D.3 3a 2 3 Câu 24. Cho tứ diện đều ABCD cĩ cạnh bằng 2a. Khoảng cách giữa 2 đường thẳng chéo nhau AB và a 2a a 3 CD theo a A. a 2 B. C. D. 2 3 3 Câu 25. Cho hình chĩp S.ABCD cĩ đáy là hình vuơng cạnh a, SA a và SA (ABCD). Tính tan φ, với φ là gĩc giữa (SBD) và (ABCD). 2 1 A. tan φ B. tan φ 2. C.tan φ D. tan φ 2. 2 2 II. Phần tự luận ( 5 điểm) 3 2 Câu 1. Viết phương trình tiếp tuyến với đồ thị hàm sốy = x + 2x – 1 tại điểm cĩ tung độ y0 = - 1 2x 3 Câu 2. Tính đạo hàm của các hàm số sau: a. y x4 2x2 6 b. y 2x 1 Câu 3. Cho hình chĩp đều S.ABCD cạnh bên bằng 2a. Giao điểm của AC và BD là O, gọi M, N lần lượt là trung điểm của AB và CD SO a 3 . a) Chứng minh CD (SON), (SAC) (SBD) b) Tính sin của gĩc hợp bởi hai mặt phẳng (SAB) và (ABCD). Tính d(AB,(SCD)) Câu 4. Tính lim ( x4 2x2 3) x
- A D O B C