Đề thi thử THPT Quốc gia lần 2 năm 2018 môn Toán - Mã đề 111 - Trường THPT Nguyễn Đăng Đạo

docx 6 trang thungat 1870
Bạn đang xem tài liệu "Đề thi thử THPT Quốc gia lần 2 năm 2018 môn Toán - Mã đề 111 - Trường THPT Nguyễn Đăng Đạo", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxde_thi_thu_thpt_quoc_gia_lan_2_nam_2018_mon_toan_ma_de_111_t.docx

Nội dung text: Đề thi thử THPT Quốc gia lần 2 năm 2018 môn Toán - Mã đề 111 - Trường THPT Nguyễn Đăng Đạo

  1. TRƯỜNG THPT NGUYỄN ĐĂNG ĐẠO ĐỀ THI THỬ THPT QUỐC GIA LẦN 2 NĂM 2018 MÔN : TOÁN MÃ ĐỀ 111 ( Thời gian làm bài 90 phút ) Câu 1 : Trong không gian với hệ tọa độ Oxyz cho mặt cầu S : x 1 2 y 2 2 z 3 2 14 và điểm A(1;-1;-6). Tìm trên trục Oz điểm B sao cho đường thẳng AB tiếp xúc với mặt cầu (S )? 3 3 19 19 A. B 0;0; B. B 0;0; C. B 0;0; D. B 0;0; 19 19 3 3 Câu 2 : y O x 1 -1 Đồ thị sau là đồ thị của hàm số nào? 1 x 1 x 2 x x A. y B. y C. y D. y 2 x x 2 2 x x 1 Câu 3 : 2x 1 Gọi A, B là giao điểm của đồ thị hàm số y với đường thẳng y x 2 . Độ dài AB bằng: x 2 AB 4 2 AB 2 A. B. AB = 2 2 C. AB 1 D. Câu 4 : Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng? A. 1 mặt phẳng. B. 2 mặt phẳng. C. 4 mặt phẳng. D. 3 mặt phẳng. Câu 5 : 3n 4n3 Kết quả của giới hạn lim 2 là: 5n 2n 1 4 3 A. 0 B. + ¥ C. D. 5 5 Câu 6 : x b Biết dx a 1 x2 C , giá trị của . bằng: 2 1 x 1 1 A. B. 1 C. -1 D. 2 2 Câu 7 : Hàm số nào sau luôn đồng biến trên ¡ ? A. y x3 x2 x 5 B. y 2x2 2x 1 C. y x4 2x2 1 D. y x 1 Câu 8 : 2 x Tập xác định của hàm số log là: x 5 A. 5;2 B. ; 5 2; C. 5;2 D. ; 5  2; Câu 9 : Cho hình hộp ABCD.A’B’C’D’ có thể tích bằng 8a3 . Biết diện tích tam giác A’BD bằng 4a2 . Gọi I là giao điểm của AB’ và A’B. Tính khoảng cách từ I đến mặt phẳng (CB’D’) theo a ? 1
  2. a 3a A. 2a B. a C. D. 2 2 Câu 10 : Cho S.ABCD là hình chóp tứ giác đều. Tính thể tích khối chóp S.ABCD biết tất cả các cạnh đều bằng a a3 2 a3 2 a3 A. a3 B. C. . D. 2 6 3 Câu 11 : Số nghiệm nguyên của bất phương trình 2x + 4.2- x < 5 là A. Vô số. B. 1. C. 2. D. 0 . Câu 12 : Hình chóp có 2018 mặt thì có số cạnh là: A. 4034 B. 4038 C. 4036 D. 4032 Câu 13 : 2017 2018 2018 2017 Cho đa thức P x x 2 3 2x a2018 x a2017 x  a1x a0 . Khi đó tính tổng S a2018 a2017  a1 a0 ? A. 1 B. 0 C. 2018 D. 2017 Câu 14 : Số nghiệm của phương trình 2x 5 2 là: A. 1 B. 2 C. 0 D. 3 Câu 15 : Véc tơ pháp tuyến của mặt phẳng (α): 3x 2y z 7 0 là: A. 3; 2; 1 B. 3; 2; 1 C. 6;4;2 D. 6;4; 2 Câu 16 : x4 9 Phương trình tiếp tuyến của đồ thị hàm số (C):y 2x2 song song với (d): y 5x 2 là: 4 4 11 A. y 5x 8 B. y 5x C. y 5x 5 D. y 5x 2 Câu 17 : Số nghiệm của phương trình: 25x 5x 3 0 là: A. 4 B. 2 C. 3 D. 1 Câu 18 : Phương trình tan(x ) 3 có bao nhiêu nghiệm x 0;  6 A. 0 B. 2 C. 1 D. 3 Câu 19 : Cho hình chóp S.ABCD đáy là hình vuông, SA vuông góc với đáy. Góc giữa hai mặt phẳng (SCD) và (ABCD) bằng góc nào? A. Góc S· DA B. Góc S· CB C. Góc S· CA D. Góc ·ASD Câu 20 : Cho hình chóp S.ABCD đáy ABCD là hình chữ nhật, AB = 2a, BC = a, SA = a 3, đường thẳng SA vuông góc với mặt đáy. Thể tích của khối chóp S.ABCD là: 2a3 3 a3 3 A. a3 3 B. C. 2a3 3 D. 3 3 Câu 21 : 2 x x 4 4 Nghiệm của bất phương trình là: 7 7 A. x 2 hoặc x 1 B. 1 x 2 C. x 2 hoặc 1 x 2 D. 1 x 2 Câu 22 : 3 2x Cho hàm số y , chọn khẳng định đúng. x 7 3 A. Hàm số nghịch biến trên ( 7; ) 2 2
  3. 3 B. Hàm số đồng biến trên ( 7; ) 2 C. Hàm số nghịch biến trên ( ; 7) và ( ; 7) D. Hàm số đồng biến trên ( ; 7) và ( 7; ) Câu 23 : 1 Cho a, b, x là các số thực dương thỏa mãn: log x log a 3log b , tìm x theo a, b 2 3 2 2 A. x 3 a.b3 B. x a3 3 b. C. x a3 3 b D. x 3 a b3 Câu 24 : Cho hai vectơ a,b có a 5; b 12; a b 13. Tính cosin giữa hai vectơ a và (a b) . 6 10 5 12 A. B. C. D. 13 13 13 13 Câu 25 : 3 Giá trị lớn nhất, nhỏ nhất của hàm số y 2sinx sin2x trên đoạn 0; là: 2 3 3 A. 2; 2 B. ; 2 C. 2 2; 2 D. 3; 3 2 Câu 26 : Với các số thực dương a, b bất kỳ. Mệnh đề nào dưới đây đúng? 2 2 A. log3 (3a .b) = 1+ 2log3 a - log3 b. B. log3 (3a .b) = 2log3 a - log3 b . 2 2 C. log3 (3a .b) = 1+ 2log3 a + log3 b . D. log3 (3a .b) = 2log3 a + log3 b . Câu 27 : Phương trình mặt phẳng (P) chứa trục Ox và tiếp xúc với mặt cầu x2 y2 z2 2x 2y 6z 6 0. A. y 2z 0 B. y 2z 0 C. x 2z 0 D. x 2z 0 Câu 28 : Hàm số nào sau đây có 2 điểm cực trị. 1 x2 x 5 A. y x3 x2 x 5 B. y 3 x 1 x 1 C. y x4 2x3 1 D. y x2 8 Câu 29 : Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A(2;0;3 );B (4;- 3;2 );C (0;2;5 ). A. 2x + y + z- 7 = 0 B. 2x + y - z- 7 = 0 C. x + 2y + z- 7 = 0 D. 2x + y - z + 7 = 0 Câu 30 : Cho hình chóp đều S.ABCD có cạnh đáy bằng 2, cạnh bên bằng 3. Gọi là góc giữa cạnh bên và mặt đáy. Mệnh đề nào sau đây đúng? 14 3 14 2 A. tanj = B. tanj = C. tanj = D. tanj = 3 14 2 14 Câu 31 : Elip có một đỉnh là A(5;0) và có một tiêu điểm là F1( 4;0) . Phương trình của elip là: x 2 y2 x 2 y2 x 2 y2 x 2 y2 A. + = 1 B. + = 1 C. + = 1 D. - = 1 16 9 25 9 5 4 5 4 3
  4. Câu 32 : Đồ thị sau đây là của hàm số nào: A. y = x 4 - 2x 2 - 3 B. y = x 4 + 2x 2 - 3 1 C. y = x 4 - 3x 2 - 3 D. y = - x 4 + 3x 2 - 3 4 Câu 33 : Biết (P) :y ax2 4x c có hoành độ đỉnh bằng 1 và cắt trục tung tại điểm có tung độ bằng 1 . Tính tổng: S a c A. 2 B. 3 C. 5 D. 1 Câu 34 : 1 3x Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y là: 3x 1 1 1 1 1 1 1 A. x ; y B. x ; y 1 C. x ; y 1 D. x ; y 3 3 3 3 3 3 Câu 35 : Cho hình chóp S.ABCD đáy là hình vuông cạnh a, SA = 2a và vuông góc với đáy. Tính cosin góc giữa hai đường thẳng AC và SB ? 6 6 3 10 A. B. C. D. 2 3 2 10 Câu 36 : Giá trị của biểu thức A 8(9/7).3(6/5) :8(2/7).3(4/5) được viết bằng 2m.3n , khi đó m n bằng: 7 17 A. 3 B. 5 C. D. 5 5 Câu 37 : 3 4 1 2 Cho a 4 a 5 ;log log . Mệnh đề nào sau đây đúng b 2 b 3 0 a 1;b 1 a 1;b 1 a 1;0 b 1 A. B. C. D. Câu 38 : Tính nguyên hàm của hàm số sau f (x) x ln(2x) x2 x2 x2 x2 A. ln(2x) C B. ln(2x) C 2 4 2 2 x2 x2 C. 2 x2 ln(2x) C D. x2 ln(2x) C 4 4 Câu 39 : Trong không gian Oxyz, cho 3 điểm A 1; 1;5 , B 3;4;4 ,C 4;6;1 . Tìm tọa độ điểm M thỏa mãn:    AM 2AB 3AC A. M 4; 10;15 B. M 5; 11;10 C. M 5; 10;15 D. M 4; 12;15 Câu 40 : Gọi S là tập hợp các số tự nhiên nhỏ hơn 106 được thành lập từ hai chữ số 0 và 1. Lấy ngẫu nhiên hai số trong S. Xác suất để lấy được ít nhất một số chia hết cho 3 là 4473 59 2279 55 A. B. C. D. 8128 96 4064 96 4
  5. Câu 41 : x2 y3 23 Số nghiệm của hệ phương trình sau bằng log3 x.log2 y 1 A. 4 B. 3 C. 1 D. 2 Câu 42 : x2 y2 Trong mặt phẳng tọa độ Oxy , cho Elip có phương trình 1. Gọi A(x ; y );B(x ; y ) là hai 4 1 1 1 2 2 điểm thuộc Elip, có hoành độ dương sao cho tam giác OAB cân tại O và diện tích lớn nhất. Tính 2 2 x1 5x2 A. 16 B. 10 C. 12 D. 20 Câu 43 : a b Nghiệm của phương trình x 3 x x2 x 2 có dạng x với a,b,c ¥ và a là số c nguyên tố, hãy tính tổng a 2b c A. 15 B. 14 C. 10 D. 16 Câu 44 : Cho các số thực a,b,c không âm thỏa mãn 2a 4b 8c 4. Gọi M ,m lần lượt là giá trị lớn nhất, M nhỏ nhất của biểu thức S a 2b 3c . Giá trị của biểu thức 4 logM (m) bằng 4096 2896 281 4090 A. B. C. D. 729 500 50 729 Câu 45 : Trong không gian Oxyz , cho các điểm A(4;1;2), B(1;4;2),C(1;1;5) , mặt cầu (S) : x2 y2 z2 2x 2y 4z 3 0, mặt phẳng (P) : x y z 7 0. Gọi giao của (S) và (P) là đường tròn (C) , M là điểm tùy ý thuộc (C). Tìm giá trị lớn nhất của biểu thức MA MB MC A. 4 6 B. 2 6 C. 8 6 D. 6 6 Câu 46 : log (ax 6x3 ) 2log ( 14x2 29x 2) 0 Tìm tất cả các tham số a để phương trình 2 1 có đúng ba 2 nghiệm phân biệt. 3 39 3 39 A. a ( ; ) B. a ( ;19) C. a (19;24) D. a (19; ) 98 2 24 2 Câu 47 : a 2b 1 Cho a,b, x 0;b, x 1 thỏa mãn log x ( ) log x a 2 . Tính giá trị của biểu thức 3 logb x 2a2 3ab b2 P ;a b (a 2b)2 29 5 17 5 A. B. C. D. 6 36 36 4 Câu 48 : Cho tứ diện ABCD và một điểm M nằm bên trong tứ diện. Các tia AM , BM ,CM , DM cắt các mặt MA' MB ' MC ' MD ' đối diện lần lượt tại A', B ',C ', D ' . Tìm giá trị nhỏ nhất của biểu thức P MA MB MC MD 8 4 A. B. C. 1 D. 2 3 3 5
  6. Câu 49 : Một quả bóng bàn và một chiếc chén hình trụ có cùng chiều cao. Người ta đặt quả bóng lên trên 3 chiếc chén thấy phần ở ngoài của quả bóng có chiều cao bằng chiều cao của nó. Gọi V ,V lần 4 1 2 V lượt là thể tích của quả bóng và chiếc chén. Tính tỉ số 1 V2 32 9 8 A. B. C. D. 2 9 8 9 Câu 50 : Cho hàm số y f (x) xác định và liên tục với mọi x 0 và thỏa mãn x2 f 2 (x) (2x 1) f (x) x. f '(x) 1,x 0; f (1) 2 . Tính f (2) 5 1 3 7 A. B. C. D. 4 4 4 4 Hết 6