Đề thi định kỳ lần 2 môn Toán Lớp 11 - Mã đề 101 - Năm học 2019-2020 - Trường THPT chuyên Bắc Ninh

doc 4 trang thungat 2900
Bạn đang xem tài liệu "Đề thi định kỳ lần 2 môn Toán Lớp 11 - Mã đề 101 - Năm học 2019-2020 - Trường THPT chuyên Bắc Ninh", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_dinh_ky_lan_2_mon_toan_lop_11_ma_de_101_nam_hoc_2019.doc
  • docPhieu soi dap an.doc

Nội dung text: Đề thi định kỳ lần 2 môn Toán Lớp 11 - Mã đề 101 - Năm học 2019-2020 - Trường THPT chuyên Bắc Ninh

  1. TRƯỜNG THPT CHUYÊN BẮC NINH ĐỀ THI ĐỊNH KÌ LẦN 2 – NĂM HỌC 2019 - 2020 TỔ TOÁN – TIN Môn thi: TOÁN 11 Thời gian làm bài : 90 Phút, không kể thời gian phát đề Đề thi gồm 04 trang (Đề có 50 câu trắc nghiệm) Họ và tên học sinh : Số báo danh : Mã đề 101 Câu 1. Cho X là tập hợp các số tự nhiên có 5 chữ số và đôi một khác nhau tạo nên từ các chữ số 0;1;3;4;5;7;8;9 . Lấy ngẫu nhiên một số từ tập X. Tính xác suất để số lấy được có chữ số đầu tiên không nhỏ hơn 5 (chữ số đầu tiên là chữ số hàng chục nghìn). 2 4 1 5 A. .B. . C. .D. . 7 7 2 7 Câu 2. Cho hình hộp ABCD.A B C D . Mặt phẳng AB D song song với mặt phẳng nào sau đây? A. BDA .B. . C BD C. .D. AC .D BA C Câu 3. Nghiệm của phương trìnhsin x cos x 0 là A. x k .B. . x k C. .D.x k . x k 4 6 4 Câu 4. Một hình thoi không có góc vuông có mấy trục đối xứng? A. Có 2 trục đối xứng.B. Có 6 trục đối xứng. C. Có 4 trục đối xứng.D. Không có trục đối xứng. Câu 5. Trong mặt phẳng tọa độ Oxy, cho M 3;0 . Phép quay tâm O góc quay 90 biến điểm M thành điểm M’ có tọa độ là A. (–3;0).B. (0; –3). C. (0;3).D. (3;0). Câu 6. Cho đường thẳng a nằm trong mặt phẳng và đường thẳng b không nằm trong . Trong các mệnh đề sau đây, mệnh đề nào là mệnh đề đúng? A. Nếu đường thẳng b song song với đường thẳng a thì đường thẳng b song song với mặt phẳng . B. Nếu đường thẳng b song song với mặt phẳng thì đường thẳng b song song với đường thẳng a . C. Nếu đường thẳng b cắt mặt phẳng thì đường thẳng b cắt đường thẳng a. D. Nếu đường thẳng b cắt mặt phẳng và mặt phẳng  chứa đường thẳng b thì giao tuyến của và  là đường thẳng cắt cả a và b . Câu 7. Một lớp học có 30 bạn học sinh trong đó có 3 cán sự lớp. Hỏi có bao nhiêu cách cử 4 bạn học sinh đi dự đại hội đoàn trường sao cho trong 4 học sinh đó có ít nhất một cán sự lớp. A. 23345 .B. . 9855 C. .D. . 9585 12455 Câu 8. Trong mặt phẳng cho điểm O . Trong các mệnh đề sau, mệnh đề nào sai? A. Phép đối xứng tâm O biến O thành chính nó. B. Phép tịnh tiến theo véc tơ u (u 0) biến O thành chính nó. C. Phép vị tự tâm O tỉ sốk(k 0) biến O thành chính nó. D. Phép quay tâm O biến O thành chính nó. Câu 9. Trong các mệnh đề sau, mệnh đề nào sai? A. Phép dời hình cũng là phép đồng dạng.B. Phép đồng dạng cũng là phép dời hình. C. Phép quay là phép dời hình.D. Phép vị tự là phép đồng dạng. Câu 10. Cho tứ diện ABCD và điểm M nằm trên cạnh AC (M khác A và C ). Mặt phẳng đi qua điểm M và song song với hai đường thẳng AB , CD . Thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng là: A. Hình chữ nhật.B. Hình thang. C. Hình bình hành.D. Hình thoi. n 1 8 Câu 11. Cho dãy số u , biết u . Số là số hạng thứ mấy của dãy số? n n 2n 1 15 A. 6 .B. . 5 C. .D. . 7 8 Câu 12. Trong các mệnh đề sau đây, mệnh đề nào là mệnh đề đúng? A. Hai đường thẳng phân biệt không song song thì chéo nhau. B. Hai đường thẳng chéo nhau thì không có điểm chung. C. Hai đường thẳng không có điểm chung thì chéo nhau. D. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau. Câu 13. Cho cấp số nhân có các số hạng lần lượt là x; 12; y; 192. Mệnh đề nào sau đây là đúng? A. B.x 3; y 48. C.x D. 1 ; y 144. x 4; y 36. x 2; y 72. 1/4 - Mã đề 101
  2. Câu 14. Cho cấp số cộng un có u1 4 và d 5. Tính tổng 100 số hạng đầu tiên của cấp số cộng. A. B.S1 0 0 24600. C.S 1D.00 24350. S100 24350. S100 24600. sin 3x Câu 15. Số nghiệm của phương trình: 0 thuộc đoạn 2 ;4  là cos x 1 A. 4.B. 5. C. 6.D. 7. Câu 16. Cho hai mặt phẳng ,  và đường thẳng l cắt mặt phẳng  . Tam giác ABC nằm trong mặt phẳng , biết rằng hình chiếu của tam giác ABC qua phép chiếu song song lên mặt phẳng  theo phương l là một đoạn thẳng. Trong các mệnh đề sau đây, mệnh đề nào là mệnh đề đúng? A. l / / hoặc l  .B. . l  C. .D. l / / . / /  Câu 17. Phương trình cos 2x 7 sin x 4 0 có nghiệm là x k2 x k2 x k2 x k2 3 6 3 6 A. .B. . C. .D. . 2 5 x k2 x k2 x k2 x k2 3 6 3 6 1 1 1 Câu 18. Nếu ; ; theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành cấp số cộng? b c c a a b A. B.c2 ; a2 ; b2. C.b 2D.; a 2 ; c2. a2 ; b2 ; c2. a2 ; c2 ; b2. 3 15 Câu 19. Trong khai triển (x xy) số hạng chính giữa là. A. 6435x29y7.B. 6435x 29y8 và 6435x29y7.C. 6435x 31y7.D. 6435x 31y7 và 6435x29y8. Câu 20. Các số x 6y, 5x 2y, 8x y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số 2 x, y 6, x 3y theo thứ tự đó lập thành một cấp số nhân với công bội khác 0 . Tính x2 y2. A. B.x2 y2 40. C.x 2D. y2 100. x2 y2 10. x2 y2 25. Câu 21. Cho tứ diện ABCD . Gọi G1 , G2 lần lượt là trọng tâm các tam giác BCD và ACD ; I là trung điểm cạnh CD . Trong các mệnh đề sau đây, mệnh đề nào là mệnh đề sai? A. BG1 , AG2 và CD đồng qui.B. . G1G2 // ABD C. G1G2 // ABC . D. G1G2 / / ABI . Câu 22. Khẳng định nào sau đây đúng? A. Hàm số y = sin x nghịch biến trên (0; ).B. Hàm số y = cot x nghịch biến trên (0; ). C. Hàm số y = cos x đồng biến trên (0; ).D. Hàm số y = tan x đồng biến trên (0; ). Câu 23. Trong mặt phẳng cho điểm Ođường thẳng d không đi qua điểm .O Trong các mệnh đề sau, mệnh đề nào đúng? A. Phép quay tâm O biến d thành đường thẳngd ' cắt d tại một điểm duy nhất O . B. Phép tịnh tiến biến d thành đường thẳng d ' song song với d . C. Phép đối xứng tâm O biến d thành đường thẳng d ' song song hoặc trùng với d . D. Phép vị tự tâm O tỉ sốk(k 0) biến d thành đường thẳng d ' song song hoặc trùng với d . Câu 24. Có 7 tấm bìa ghi 7 chữ “HIỀN”, “TÀI”, “LÀ”, “NGUYÊN”, “KHÍ”, “QUỐC”, “GIA”. Một người xếp ngẫu nhiên 7 tấm bìa cạnh nhau. Tính xác suất để khi xếp các tấm bìa được dòng chữ “HIỀN TÀI LÀ NGUYÊN KHÍ QUỐC GIA”. 1 1 1 1 A. .B. . C. .D. . 13 24 25 5040 Câu 25. Từ các chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau trong đó luôn có mặt hai chữ số 1 và 6. A. B.40 8. C.12 D.0. 480. 720. Câu 26. Một bài kiểm tra có 5 câu theo 5 mức độ khác nhau, xác suất để bạn An làm đúng câu 1 là 100% và giảm dần đều 10% sang mỗi câu tiếp theo. Tính xác suất để bạn An làm đúng hết cả bài kiểm tra đó. 36 189 18 189 A. .B. . C. .D. . 125 625 125 6250 1 Câu 27. Nghiệm của phương trìnhcos x là 2 2 A. x 2k .B. x . 2k C. x .D. 2k . x k 6 3 3 6 2/4 - Mã đề 101
  3. Câu 28. Khẳng định nào sau đây sai? A. sin x 1 x k2 (k ¢ ).B. sin x 1 (x ) . k2 k ¢ 2 2 C. cos x 1 x k 2 (k ¢ ). D. cos x 0 x k2 (k ¢ ) 2 Câu 29. Phương trình 3 tan x 1 cos2 x 1 0 có nghiệm là: A. x k2 .B. x . k C. .D.x k . x k 6 6 2 6 Câu 30. Phương trình cos3x m 1 có nghiệm khi A. B. 1 m 1 C. 2D. m 0 4 m 2 m 0 Câu 31. Cho các số nguyên k, n thỏa mãn 0 k n . Trong các công thức sau, công thức nào sai ? n! A. P An .B. . C k C. .D. C k .C n k P n! n n n n k ! n n n Câu 32. Có bao nhiêu giá trị nguyên của m để phương trình sin x m 1 cos x 2m 1 có nghiệm: A. 4 .B. .C. .D. . 1 3 2 Câu 33. Có bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau? A. 5040 .B. . 1200 C. .D. . 4536 210 Câu 34. Trong mặt phẳng tọa độ Oxy, cho A 2;5 , B 6;1 ,C 2; 3 . Phép đối xứng tâm O (O là gốc tọa độ) biến ABC thành A B C . Khi đó trọng tâm tam giác A B C có tọa độ là A. (-6; -3).B. (- 2; -1). C. (2;1). D. (6;3). 21 Câu 35. Trong khai triển biểu thức x y , hệ số của số hạng chứa x13 y8 là: A. 1287 .B. . 29393C.0 .D. 2 .03490 116280 Câu 36. Số cách chia 8 đồ vật khác nhau cho 3 người sao cho có một người được 2 đồ vật và 2 người còn lại mỗi người được 3 đồ vật là: A. 1680 .B. . 560 C. .D. . 3360 840 Câu 37. Số nghiệm của phương trình sin 5x 3 cos5x 2sin 7x trên khoảng 0; là: 2 A. 1 .B. . 3C. .D. . 2 4 Câu 38. Cho tập A 1;2;3; ;2019 và các số a,b,c A . Hỏi có bao nhiêu số tự nhiên có dạng abc sao cho a b c và a b c 2019 . A. 2035153 .B. . 339192 C. .D. 20321 .28 338688 5 10 Câu 39. Tìm hệ số của x5 trong khai triển P x x 1 2x x2 1 3x . A. 259200 .B. . 3240 C. .D. . 80 3320 Câu 40. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng không đi qua đỉnh S và cắt các SB cạnh SA, SB, SC, SD lần lượt tại các điểm M , N, P,Q . Biết SA 2SM và SC 3SP , tính tỉ số khi biểu thức SN 2 2 SB SD T 4 đạt giá trị nhỏ nhất. SN SQ A. 4 .B. . 2 C. .D. . 1 3 Câu 41. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : x2 y2 6x 2y 6 0 . Phép vị tự tâm I (2;1) tỉ số k=-3 biến đường tròn (C) thành đường tròn (C’). Tìm phương trình đường tròn (C’). A. (C) : x2 y2 10x 10y 14 0 .B. (C) : x2 y2 34 . x 2y 254 0 C. (C) : x2 y2 2x 14y 14 0 . D. (C) : x2 y2 26x 2y 134 0 . 2 5 Câu 42. Tìm m để giá trị lớn nhất của hàm số y cos x 3sinx m 3 trên ; bằng 2. 6 6 7 23 A. m .B. . m C. .D. . m 5 m 2 4 4 Câu 43. Cho hình chópS.ABCD có tất cả các cạnh cùng bằng 12a , đáy ABCD là hình vuông. Gọi M , N lần lượt là 3/4 - Mã đề 101
  4. trung điểm SA, SB và G là trọng tâm tam giác SCD . Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng MNG . A. 14 17a2 .B. . 7 51a2 C. .D. 7 17a . 2 14 51a2 Câu 44. Số nghiệm thuộc khoảng 0;2020 của phương trình: 3 1 cos2x sin 2x 4cos x 8 4 1 3 sin x là: A. 321 .B. . 323C. .D. . 322 320 Câu 45. Trò chơi quay bánh xe số trong chương trình truyền hình “Hãy chọn giá đúng” của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5 , 10 , 15 , , 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 lần hoặc 2 lần nếu điểm ở lần quay đầu chưa thắng, và điểm số của người chơi được tính như sau: +) Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được. +) Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được. +) Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100 . Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75 . Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này. 1 3 7 19 A. P .B. . P C. .D. P . P 4 16 16 40 Câu 46. Sắp xếp 7 học sinh lớp A và 7 học sinh lớp B vào hai dãy ghế đối diện nhau, mỗi dãy 7 ghế sao cho hai học sinh ngồi đối diện nhau phải khác lớp. Khi đó số cách xếp là: A. 3251404800 .B. 16 . 25702400 C. 3 .D.25 140480 . 645120 Câu 47. Từ 12 học sinh gồm 5 học sinh giỏi, 4 học sinh khá, 3 học sinh trung bình. Giáo viên muốn thành lập 4 nhóm làm 4 bài tập lớn khác nhau, mỗi nhóm 3 học sinh. Tính xác suất để nhóm nào cũng có học sinh giỏi và học sinh khá. 36 72 18 144 A. .B. . C. .D. . 385 385 385 385 Câu 48. Từ các chữ số 0;1;2;3;4;5;6;7 có thể lập được bao nhiêu số tự nhiên có 8 chữ số đôi một khác nhau, sao cho tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. A. 2304 .B. . 3456 C. .D. . 4068 4032 Câu 49. Hai đường tròn nhỏ có bán kính là 5cm tiếp xúc ngoài với nhau và cùng tiếp xúc trong với một đường tròn to có m bán kính 13cm lần lượt tại tiếp điểm A, B (hình vẽ). Độ dài đoạn thẳng AB được viết ở dạng phân số tối giản cm, n trong đó m, n là các số nguyên dương. Tính m+n. A. 58. B. 93. C. 69. D. 29. A B Câu 50. Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích của mặt trên của tầng ngay bên dưới và diện tích mặt trên của tầng 1 bằng nửa diện tích của đế tháp (có diện tích là 12 288 m2 ). Tính diện tích mặt trên cùng. A. B.8m 2. C.6 mD.2 . 12m2. 10m2. HẾT 4/4 - Mã đề 101