Đề thi thử THPT Quốc gia lần 3 môn Toán Lớp 12 - Mã đề 132 - Năm học 2018-2019 - Trường THPT chuyên Lê Quý Đôn

doc 6 trang thungat 2910
Bạn đang xem tài liệu "Đề thi thử THPT Quốc gia lần 3 môn Toán Lớp 12 - Mã đề 132 - Năm học 2018-2019 - Trường THPT chuyên Lê Quý Đôn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_thu_thpt_quoc_gia_lan_3_mon_toan_lop_12_ma_de_132_nam.doc

Nội dung text: Đề thi thử THPT Quốc gia lần 3 môn Toán Lớp 12 - Mã đề 132 - Năm học 2018-2019 - Trường THPT chuyên Lê Quý Đôn

  1. SỞ GD & ĐT TỈNH ĐIỆN BIÊN ĐỀ THI THỬ THPTQG LẦN 3 TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN NĂM HỌC 2018 - 2019 TỔ: TOÁN – TIN MÔN: TOÁN Thời gian làm bài: 90 Phút; (Đề có 50 câu) (Đề có 06 trang) Họ tên: . Số báo danh: . Mã đề 132 ĐỀ BÀI Câu 1: Trong không gian Oxyz , cho mặt phẳng (a): x – 2y + 2z – 3 = 0 . Điểm nào sau đây nằm trên mặt phẳng (a) ? A. .M (2;0;1) B. . Q(2C.;1 ;.1 ) D. . P(2;- 1;1) N(1;0;1) Câu 2: Cho các số thực a, b thỏa mãn 0 < a < 1 < b. Tìm khẳng định đúng: a b a b A. .l n a ln b B. . C. . 0,5 0,D.5 loga b 0 2 2 . Câu 3: Phương trình 9x 6x 22x 1 có bao nhiêu nghiệm âm? A. 2. B. 3. C. 0. D. 1. Câu 4: Thiết diện qua trục của một hình trụ là một hình vuông có cạnh bằng 2a . Tính theo a thể tích khối trụ đó. 2 A. a3. B. 2 a3. C. 4 a3. D. a3. 3 2 Câu 5: Tập nghiệm của phương trình log0,25 x 3x 1 là: 3 2 2 3 2 2  A. . 4 B. . C. . ;  D. 1; 4 1;4. 2 2  Câu 6: Cho số phức z 2 3i . Số phức liên hợp của số phức z là: A. .z 3 2i B. . zC. .3 2i D. . z 2 3i z 2 3i Câu 7: Cho hàm số y f x . Hàm số y f x có bảng biến thiên như sau: Bất phương trình f x 2x m đúng với mọi x 1;1 khi và chỉ khi: 1 1 A. .m f B.1 . 2 C. . mD. .f 1 2 m f 1 m f 1 2 2 Câu 8: Cho hàm số y f x liên tục trên ¡ , có đạo hàm f x x 1 x2 2 x4 4 . Số điểm cực trị của hàm số y f x là A. .3 B. . 1 C. 4 . D. .2 Câu 9: Trên kệ sách có 10 cuốn sách Toán và 5 cuốn sách Văn. Lấy lần lượt 3 cuốn mà không để lại trên kệ. Tính xác suất để được hai cuốn sách đầu là Toán, cuốn thứ ba là Văn. 18 7 8 15 A. . B. . C. . D. . 91 45 15 91 Trang 1/6 - Mã đề thi 132
  2. 2 2 2 Câu 10: Trong không gian Oxyz , (S) : (x - 1) + (y - 1) + (z - 1) = 1 và điểm A(2;2;2) . Xét các điểm M thuộc (S) sao cho đường thẳng AM luôn tiếp xúc với (S) . M luôn thuộc một mặt phẳng cố định có phương trình là A. .x + y + z – 6 = 0 B. . x + y + z - 4 = 0 C. .3 x + 3y + 3z – 8 = 0 D. . 3x + 3y + 3z – 4 = 0 Câu 11: Có bao nhiêu giá trị nguyên của m để hàm số y 3x m sin x cos x m đồng biến trên ¡ ? A. 3. B. Vô số C. 4. D. 5. Câu 12: Trong không gian Oxyz , có tất cả bao nhiêu giá trị nguyên của m để phương trình: x 2 + y2 + z2 + 4mx + 2my - 2mz + 9m2 - 28 = 0 là phương trình của mặt cầu? A. .7 B. . 8 C. . 9 D. . 6 Câu 13: Cho hàm số y f x có bảng biến thiên như sau Số nghiệm của phương trình 2 f x 5 0 là: A. .4 B. . 0 C. . 3 D. . 2 Câu 14: Tính thể tích của vật thể tròn xoay khi quay hình H quanh Ox với H được giới hạn bởi đồ thị hàm số y 4x x2 và trục hoành. 31 32 34 35 A. B. C. D. . 3 3 3 3 1 Câu 15: Tập hợp tất cả các giá trị thực của tham số m để hàm số y x3 x2 mx 2019 nghịch biến 3 trên khoảng 0; là: A. .m 1 B. . m C.1 . D. m. 1 m 1 Câu 16: Tìm tập xác định của hàm số y ln 1 x . A. D ; 1 . B. D 1; . C. D ;1 . D. D 1; . x2 1 Câu 17: Tính giới hạn lim . x 1 x 1 A. .0 B. . C. . D. . 1 Câu 18: Tính đạo hàm của hàm số y 2x . 2x A. y' . B. y' 2x ln 2. C. y' x.2x 1 ln 2. D. y' x.2x 1. ln 2 Trang 2/6 - Mã đề thi 132
  3. Câu 19: Cho hàm số y f x có đồ thị hàm sốy f x như hình vẽ bên. Khẳng định nào sau đây đúng về hàm số y f x ? y y = f'(x) -1 1 2 x O A. Hàm số đồng biến trên khoảng ; 1 . B. Hàm số đồng biến trên khoảng 1;0 . C. Hàm số đồng biến trên khoảng 1;2 . D. Hàm số nghịch biến trên khoảng 0; . Câu 20: Trong không gian Oxyz , cho A(3;0;0),B (0;0;4) . Chu vi tam giác OAB bằng: A. .1 4 B. . 7 C. . 6 D. . 12 Câu 21: Cắt mặt cầu (S) bằng một mặt phẳng cách tâm một khoảng bằng 4cm được thiết diện là một hình tròn có diện tích 9 cm2. Tính thể tích khối cầu (S). 250 2500 25 500 A. cm3. B. cm3. C. cm3. D. cm3. 3 3 3 3 Câu 22: Trong không gian Oxyz , cho hai điểm A(1;2;- 1) ,B(3;0;3) . Biết mặt phẳng (P) đi qua điểm A và cách B một khoảng lớn nhất. Phương trình mặt phẳng (P) là A. .x - 2y + 2z + 5 = 0 B. . x - y + 2z + 3 = 0 C. .2 x - 2y + 4z + 3 = 0 D. . 2x - y + 2z = 0 Câu 23: Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại B, AB a và AC a 3. Biết SA  ABC và SB a 5. Tính theo a thể tích khối chóp S.ABC. a3 6 a3 15 a3 2 a3 6 A. . B. . C. . D. . 6 6 3 4 Câu 24: Đường cong trong hình bên là đồ thị của hàm số nào? y 2 O -1 -1 x 2x 1 x 1 2x 1 2x 1 A. .y B. . yC. . D. . y y x 1 x 2 x 1 x 1 Trang 3/6 - Mã đề thi 132
  4. x - 1 y - 2 z - 3 Câu 25: Trong không gian Oxyz , cho điểm M(1;0;1) và đường thẳng d : = = . 1 2 3 Đường thẳng đi qua M , vuông góc với d và cắt Oz có phương trình là ì ì ì ì ï x = 1- 3t ï x = 1- 3t ï x = 1- 3t ï x = 1+ 3t ï ï ï ï A. .í y = 0 B. . C. í. y = 0 D. . í y = t í y = 0 ï ï ï ï ï z = 1+ t ï z = 1- t ï z = 1+ t ï z = 1+ t îï îï îï îï Câu 26: Cho hàm số y = f (x) liên tục trên đoạn [- 2;6] và có đồ thị như hình vẽ bên dưới. y 5 -2 -1 O 1 3 4 6 x -1 y = f(x) -3 -4 Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [- 2;6 .] Giá trị của M - m bằng: A. .9 B. . - 8 C. . - 9 D. . 8 Câu 27: Tìm tất cả các giá trị thực của tham số m để hàm số y log(x2 4x m 1) có tập xác định là ¡ . A. m 4. B. m 0. C. m 4. D. m 3. Câu 28: Trong không gian Oxyz , cho mặt phẳng (a) : ax - y + 2z + b = 0 đi qua giao tuyến của hai mặt phẳng (P) : x - y - z + 1 = 0 và (Q) : x + 2y + z - 1 = 0 . Tính a + 4b . A. .- 16 B. . - 8 C. . 0 D. . 8 Câu 29: Tổng các nghiệm của phương trình log x2 log 3 1 là: 4 2 A. 6. B. 0. C. 5. D. 4. Câu 30: Cho hàmsố y f x có bảng biến thiên như sau Giá trị cực đại của hàm số bằng A. . 2 B. . 1 C. . 2 D. . 3 Câu 31: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA 2a S và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD . Tính tang của góc tạo bởi hai mặt phẳng AMC và SBC bằng M 3 2 3 A. . B. . 2 3 A D 5 2 5 C. . D. . 5 5 B Trang 4/6 - Mã Cđề thi 132
  5. Câu 32: Một người thả một lá bèo vào một chậu nước. Sau 12 giờ, bèo sinh sôi phủ kín mặt nước trong chậu. Biết rằng sau mỗi giờ lượng bèo tăng gấp 10 lần lượng bèo trước đó và tốc độ tăng không đổi. Hỏi 1 sau mấy giờ thì bèo phủ kín mặt nước trong chậu (kết quả làm tròn đến 1 chữ số phần thập phân). 5 A. 9,1 giờ. B. 9,7 giờ. C. 10,9 giờ. D. 11,3 giờ. Câu 33: Tính thể tích V của khối chóp có đáy là hình vuông cạnh 2vàa chiều cao là 3a. 4 A. V 4a3. B. V 2a3. C. V 12a3. D. V a3. 3 Câu 34: Cho f , g là hai hàm liên tục trên [1;3] thoả: 3 3 3 f x 3g x dx 10, 2 f x g x dx 6 . Tính f x g x dx 1 1 1 A. 7 B. 6 C. 8 D. 9. 5x 8 Câu 35: Đồ thị của hàm số y có bao nhiêu đường tiệm cận? 2 x 3x A. 2 . B. 4 . C. 1 . D. 3 . Câu 36: Cho hình nón có bán kính đáy bằng 2cm, góc ở đỉnh bằng 60 . Tính thể tích của khối nón đó. 8 3 8 3 8 A. cm3. B. 8 3 cm3. C. cm3. D. cm3. 9 3 3 Câu 37: Trong các số phức z thỏa mãn: z 1 i z 1 2i , số phức z có mô đun nhỏ nhất có phần ảo là : 3 3 3 3 A. . B. . C. . D. . 10 5 5 10 Câu 38: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’ và BC a 3 bằng . Tính theo a thể tích của khối lăng trụ đó. 4 a3 3 a3 3 a3 3 a3 3 A. . B. . C. . D. . 12 6 3 24 2 1 Câu 39: Cho hàm số f x liên tục trên ¡ và f 2 16, f x dx 4 . Tính I x. f 2x dx 0 0 A. .7 B. . 12 C. . 20 D. . 13 Câu 40: Tính x sin 2x dx x2 1 x2 1 x2 A. cos2x C B. x2 cos2x C C. cos2x C D. . sin x C 2 2 2 2 2 Câu 41: Cho hàm số y f x có bảng xét dấu đạo hàm như sau: Hàm số y f x2 2 nghịch biến trên khoảng nào dưới đây? A. . 2; 1 B. . 2; C. . D. .0;2 1;0 64 dx 2 Câu 42: Giả sử I a ln b với a,b là số nguyên. Khi đó giá trị a b là 3 1 x x 3 A. . 17 B. 5 . C. . 5 D. . 17 Trang 5/6 - Mã đề thi 132
  6. 2 2 Câu 43: Trong không gian Oxyz , cho mặt cầu (S) : (x - 3) + (y - 1) + z2 = 4 và đường thẳng ì ï x = 1+ 2t ï d : í y = - 1+ t ,(t Î ¡ ) . Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính nhỏ nhất có ï ï z = - t îï phương trình là A. y + z + 1 = 0. B. x + 3y + 5z + 2 = 0. C. x - 2y - 3 = 0 . D. .3x - 2y - 4z - 8 = 0 Câu 44: Cho hàm số y f x . Đồ thị của hàm số y f x trên  5;3 như hình vẽ (phần cong của đồ thị là một phần của parabol y ax2 bx c). Biết f 0 0, giá trị của 2 f 5 3 f 2 bằng 109 35 A. .3 3 B. . C. . D. . 11 3 3 Câu 45: Tìm hai số thực x và y thỏa mãn 3x 2yi 3 i 4x 3i với i là đơn vị ảo. 2 A. x 3; y 1 . B. x ; y 1 . C. .x 3; y D. .3 x 3; y 1 3 2 Câu 46: Kí hiệu z1; z2 là hai nghiệm phức của phương trình 3z z 1 0 . Tính P z1 z2 . 14 2 3 2 3 A. P B. P C. P D. P 3 3 3 3 Câu 47: Trong mặt phẳng tọa độ Oxy , tìm tập hợp các điểm biểu diễn số phức z biết z 2 3i 2 A. Một đường thẳng. B. Một hình tròn. C. Một đường tròn. D. Một đường Elip. Câu 48: Từ các chữ số 1,2,3,4,5,6 lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau? 3 3 3 A. .C 6 B. . 6 C. . A6 D. . 6! Câu 49: Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m2 x4 16 m x2 4 28 x 2 0 đúng với mọi x ¡ . Tổng giá trị của tất cả các phần tử thuộc S bằng : 15 1 7 A. . B. . 1 C. . D. . B A 8 8 8 D Câu 50: Cho hình lập phương ABCD.A B C D . Tính góc giữa AC và BD C A. .9 0 B. . 45 C. .6 0 D. 120 B' A' HẾT C' D' Trang 6/6 - Mã đề thi 132