Đề khảo sát kiểm tra học kỳ II môn Toán Lớp 11 - Năm 2016-2017 - Trường THPT Thới Lai (Có đáp án)

doc 5 trang thungat 2080
Bạn đang xem tài liệu "Đề khảo sát kiểm tra học kỳ II môn Toán Lớp 11 - Năm 2016-2017 - Trường THPT Thới Lai (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_khao_sat_kiem_tra_hoc_ky_ii_mon_toan_lop_11_nam_2016_2017.doc

Nội dung text: Đề khảo sát kiểm tra học kỳ II môn Toán Lớp 11 - Năm 2016-2017 - Trường THPT Thới Lai (Có đáp án)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KIỂM TRA HỌC KÌ II NĂM HỌC 2016 - 2017 THÀNH PHỐ CẦN THƠ MÔN: TOÁN 11 TRƯỜNG THPT THỚI LAI Thời gian làm bài:90 phút; (Thí sinh không được sử dụng tài liệu) I. PHẦN TRẮC NGHIỆM: x2 1 Câu 1: Tínhlim bằng x x2 3x 2 1 1 A. 1. B. . C. 1 . D. . 2 2 x 1 2 Câu 2: Tính lim bằng x 3 9 x2 1 1 1 1 A. . B. . C. . D. . 24 24 6 6 Câu 3: Hàm số nào sau đây không liên tục trên R? A. y sin x . B. y 3x4 2x 3 . C. y tan x . D. y cos x . Câu 4: Chứng minh rằng phương trình x3 x 3 0 có ít nhất một nghiệm. Một bạn học sinh trình bày lời giải như sau: Bước 1: Xét hàm số y f (x) x3 x 3 liên tục trên ¡ . Bước 2: Ta có f (0) 3 và f ( 2) 3 . Bước 3: suy ra f (0). f ( 2) 0 . Bước 4: Vậy phương trình đã cho có ít nhất 1 nghiệm. Hãy tìm bước giải sai của bạn học sinh trên ? A. Bước 1. B. Bước 2 . C. Bước 3. D. Bước 4 . Câu 5: Đạo hàm của hàm số y cos2x tại x là 8 2 2 A.2 . B. . C. 2 . D. . 2 2 Câu 6: Cho u u x ,v v x ,v x 0 . Hãy chọn khẳng định sai? 1 v ' A. u v ' u ' v ' . B. . v v C. u.v ' u '.v u.v ' . D k.u k.u 2x 1 Câu 7: Đạo hàm của hàm số y là 1 x 1 1 3 3 A. y ' . B. y ' . C. y ' . D. y ' . x 1 2 1 x 2 x 1 2 1 x 2 Câu 8: Tính đạo hàm của hàm số sau y 2x 1 2017 . 2016 2017 2017 2x 1 A.y ' B.y ' . 2 2x 1 2017 2 x 1 2017 2x 1 2017 2017 2x 1 2016 C.y ' . D. y ' . 2 2x 1 2017 2x 1 2017 Câu 9: Khẳng định nào sau đây sai? A. sin x cos x . B. cos x sin x . 1
  2. 1 1 C. tan x . D. cot x . cos2 x sin2 x Câu 10: Đạo hàm của hàm số y x3cosx là A. y ' 3x2 cos x x3 sin x . B. y ' 3x2 cos x x3 sin x . C. y ' 3x cos x x3 sin x . D. y ' 3x2 cos x 3x2 sin x . Câu 11: Đạo hàm cấp hai của hàm số y cos x là A.y '' sin x . B.y '' cos x . C.y '' cos x . D. y '' sin x . Câu 12: Cho hình hộp ABCD.A' B 'C ' D ' . Đẳng thức nào sau đây là sai?         A. AB AD AA' AC ' . B. BC CD BB ' BD ' .         C. CB CD DD' CA' . D. AD AB AA' A'C .   Câu 13: Cho hình lập phương ABCD.A' B 'C ' D ' . Tìm góc giữa hai vectơ AD ' và BD . A. 450 B. 300 C. 600 D. 1200 Câu 14: Trong không gian, phát biểu nào sau đây là sai ? A. Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau. B. Nếu hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau. C. Cho hai đường thẳng song song. Đường thẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia. D. Hai đường thẳng vuông góc với nhau thì chúng có thể cắt nhau hoặc chéo nhau. Câu 15: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA  (ABCD) . Chọn khẳng định sai ? A. BD  SAC . B. AC  SBD . C. BC  SAB . D.DC  SAD . Câu 16: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA  (ABC) và AH là đường cao của SAB . Khẳng định nào sau đây sai ? A. SB  BC . B. AH  BC . C. SB  AC . D. AH  SC . Câu 17: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA  (ABCD) . Khi đó, mặt phẳng (SCD) vuông góc với mặt phẳng A.(SBC) . B.(SAC) . C.(SAD) . D.(ABCD) . Câu 18: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA  (ABCD) và SA=x. Tìm x để góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600 là a 3 A. x . B. x a 3 . C. x a 6 . D. x a 2 . 3 Câu 19: Cho a và b là hai đường thẳng chéo nhau, biết a  (P),b  (Q) và(P) / /(Q) . Khẳng định nào sau đây là sai? A. Khoảng cách giữa hai đường thẳng a và b bằng khoảng cách từ đường thẳng a đến mặt phẳng (Q). B. Khoảng cách giữa hai đường thẳng a và b bằng khoảng cách từ một điểm A tùy ý thuộc đường thẳng a đến mặt phẳng (Q). C. Khoảng cách giữa hai đường thẳng a và b không bằng khoảng cách giữa hai mặt phẳng (P) và (Q). D. Khoảng cách giữa hai đường thẳng a và b bằng độ dài đoạn thẳng vuông góc chung của chúng. 1 Câu 20: Một vật được thả rơi tự do ở độ cao 147m có phương trình chuyển động S t gt ,2 trong 2 đó g 9,8m / s2 và t tính bằng giây(s). Tính vận tốc của vật tại thời điểm vật tiếp đất. 49 30 49 15 A. 30 m / s B. 30 m / s C. m / s D. m / s 5 5 II. PHẦN TỰ LUẬN (5,0 điểm): 2x 5 Bài 1( 1,0 điểm): Viết phương trình tiếp tuyến của đồ thị hàm số (C) : y , biết tiếp tuyến x 2 song song với đường thẳng d : y x 2017 . Bài 2 ( 2,0 điểm): Tính đạo hàm của các hàm số sau: 2
  3. x5 a) y 2x2 x . 5 sinx b) y . sin x cos x 2 c) y cos 2x . 3 Bài 3 ( 2,0 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA  ABCD và SA a 10 . Gọi M , N lần lượt là trung điểm của BC và CD. a. Chứng minh : BD  (SAC) b. Tính góc giữa SM và (ABCD). c. Tính khoảng cách từ điểm C đến mặt phẳng SMN . 3
  4. ĐÁP ÁN VÀ THANG ĐIỂM CHẤM I. Phần trắc nghiệm 1A 2A 3C 4C 5C 6B 7A 8D 9C 10A 11B 12D 13C 14A 15B 16C 17C 18B 19C 20C II. Phần tự luận Bài ĐÁP ÁN Điểm 1 2x 5 Viết phương trình tiếp tuyến của đồ thị hàm số (C) : y , biết tiếp x 2 tuyến song song với đường thẳng d : y x 2017 . Gọi x0; y0 là tọa độ tiếp điểm. Vì d : y x 2017 có hệ số góc k 1 0,25 9 Suy ra: hệ số góc tiếp tuyến y x 1 1 0 2 0,25 x0 2 2 x0 5 x0 4x0 5 0 x0 1 0,25 x0 1 y0 1 pttt : y x 2 x0 5 y0 5 pttt : y x 10 0,25 2a x5 y 2x2 x 5 1 y ' x4 4x 0,75 2 x 2b sinx y . sin x cos x sin x ' sin x cos x sin x sin x cos x ' y ' 0,25 sin x cos x 2 cos x sin x cos x sin x cos x sin x 0,25 sin x cos x 2 1 2 0,25 sin x cos x 2c 2 y cos 2x . 3 0,25 y ' 2cos 2x cos 2x 3 3 2 4cos 2x .sin 2x 2sin 4x 3 3 3 0,25 3a Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA  ABCD và SA a 10 . Gọi M , N lần lượt là trung điểm của BC và CD. 4
  5. S 0,5 H A D 0,5 O I N B M C a. Chứng minh : BD  (SAC) BD  AC  BD  SAC BD  SA  3b b. Tính góc giữa SM và (ABCD). Hình chiếu của SM lên (ABCD) là AM. Nên  SM , ABCD  SM , AM SMA 0,25 Xét SAM vuông tại A, ta có SA a 10 tan S· MA 2 2 AM a 5 0,25 2 S· MA 70 31' 3c c. Tính khoảng cách từ điểm C đến mặt phẳng SMN . Gọi O AC  BD; I AC  MN . 1 Vì d C, SMN d O, SMN d A,(SMN) 3 0,25 Theo giả thiết, ta có: (SMN)  (SAC) SMN  (SAC) SI Kẻ AH  SI tại H nên AH  (SMN) d(A,(SMN) AH 3 3 2a Xét SAI vuông tại A , với AC a 2, AI AC 4 4 Nên 1 1 1 1 1 89 2 2 2 2 2 2 AH SA AI (a 10) 3 2 90a a 4 90a2 10 AH 2 AH 3a 89 89 1 AH a 10 Vậy d C,(SMN) d O,(SMN) d A,(SMN) 0,25 3 3 89 Mọi cách giải khác đúng đều cho chọn điểm. 5