Đề thi chọn lớp chất lượng cao môn Toán Lớp 11 - Trường THPT Yên Phong (Có ma trận và đáp án)
Bạn đang xem tài liệu "Đề thi chọn lớp chất lượng cao môn Toán Lớp 11 - Trường THPT Yên Phong (Có ma trận và đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_chon_lop_chat_luong_cao_mon_toan_lop_11_truong_thpt_y.pdf
Nội dung text: Đề thi chọn lớp chất lượng cao môn Toán Lớp 11 - Trường THPT Yên Phong (Có ma trận và đáp án)
- SỞ GD-ĐT BẮC NINH THI CHỌN LỚP CHẤT LƯỢNG CAO TRƯỜNG THPT YÊN PHONG SỐ 2 MÔN TOÁN - LỚP 11 Ngày thi: 21-5-2018 MA TRẬN ĐỀ (Tự luận 70%, Trắc nghiệm khách quan 30%) Chủ đề Mức độ 1 Mức độ 2 Mức độ 3 Mức độ 4 Điểm Hàm số, hàm số bậc nhất, 2TN 0,5 hàm số bậc hai, Bất đẳng thức, giá trị lớn nhất và giá trị nhỏ nhất Phương trình, bất phương 1TL 1,0 trình, hệ phương trình đại số Công thức lượng giác, hàm 1TN 1TL 1,25 số lượng giác và phương trình lượng giác Thống kê toán học, đại số tổ 1TN 1TL 1,25 hợp và xác suất Dãy số, cấp số cộng và cấp 1TN 0,25 số nhân Giới hạn của dãy số, giới 2TN 0,5 hạn của hàm số và hàm số liên tục Đạo hàm và một số vấn đề 1TN 1TL 1,25 liên quan Vectơ trong mặt phẳng, Hệ 1TN 0,25 thức lượng trong tam giác và giải tam giác Phương pháp tọa độ trong 1TL 1,0 mặt phẳng Phép biến hình trong mặt 2TN 0,5 phẳng Đại cương về đường thẳng 1TN 0,25 và mặt phẳng trong không gian, Quan hệ song song trong không gian Quan hệ vuông góc trong 1TL 1TL 2,0 không gian, bài toán thiết diện, bài toán tìm góc và khoảng cách Tổng 4 3 2 1 10 xa.nguyenvan@gnail.com
- SỞ GD-ĐT BẮC NINH ĐỀ THI CHỌN LỚP CHẤT LƯỢNG CAO TRƯỜNG THPT YÊN PHONG SỐ 2 MÔN: TOÁN HỌC - LỚP 11 Thời gian làm bài: 90 phút Ngày thi: 21-5-2018 (Đề thi gồm 02 trang) Họ, tên thí sinh: Số báo danh: A. TRẮC NGHIỆM KHÁCH QUAN (3 điểm) 2018 Câu 1. Tìm tập xác định của hàm số y = . 21x− 5 5 5 5 21 A. B. C. ℝ D. ;.+∞ ;.+∞ \. ;.+∞ 21 21 21 5 x Câu 2. Tính đạo hàm của hàm số y=sin2 x + cos − 2017. 3 x 1 x 1 1 x A. y'= cos 2 x − sin . B. y'= 2cos2 x + sin . C. y'= 2cos x − sin x .D. y'= 2cos 2 x − sin . 3 3 3 3 3 3 Câu 3. Trong mặt phẳng Oxy, tìm tọa độ đỉnh của parabol (P ) : y= − x2 − 6 x − 1. A. I (−3;8) . B. I (−6; − 1) . C. I (3;8) . D. I (3;− 10) . Câu 4. Trong mặt phẳng Oxy, cho điểm M (2;− 1). Gọi AB, lần lượt là ảnh của M qua phép đối xứng trục Ox,. Oy Tìm một vectơ pháp tuyến của đường thẳng AB. A. n = (2;1). B. n =( − 2;1). C. n =(1; − 2). D. n =( − 1; − 2). 10 Câu 5. Tìm hệ số của x2 trong khai triển (1− 3x) thành đa thức. A. 405. B. −405. C. −360. D. 45. Câu 6. Ba số 4x , y ,− 2 theo thứ tự lập thành một cấp số cộng, ba số y,− x ,1 theo thứ tự lập thành một cấp số nhân. Tính giá trị của biểu thức x+ y . A. 16. B. 0. C. 2. D. 4. Câu 7. Cho hình chóp S. ABC có ABC', ', ' lần lượt là trọng tâm các tam giác SBC,, SCA SAB và M là SM một điểm thuộc mặt phẳng (ABC ). Gọi M ' là giao điểm của SM với (ABC ' ' '). Tính tỉ số . SM ' 1 2 3 A. . B. . C. 2. D. . 3 3 2 Câu 8. Khẳng định nào sau đây sai? A. Thực hiện liên tiếp một phép dời hình và một phép đồng dạng ta được một phép đồng dạng. B. Thực hiện liên tiếp một phép đồng dạng và một phép dời hình ta được một phép dời hình. C. Phép vị tự tỉ số k ≠ 0 là phép đồng dạng tỉ số k . D. Phép dời hình bảo toàn khoảng cách giữa hai điểm bất kì. Câu 9. Xét chuyển động thẳng có phương trình S= t3 −3 t 2 − 9 t ( S được tính bằng mét, t ≥ 0 được tính bằng giây). Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu. A. −12m/s. B. 12m/s. C. 9m/s. D. 20m/s. Trang 1/2